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Abstract

Human motion generation has made tremendous progress in recent years, with state-
of-the-art approaches surpassing ground truth data in leading evaluation benchmarks.
However, visual inspection of the generated motions paints a different picture. Even
state-of-the-art approaches generate motions frequently containing self-intersections, i.e.,
body parts interpenetrating, which are strong artifacts, severely limiting the perceived
motion quality. We introduce a novel loss, which explicitly penalizes self-intersections,
to the training of human motion generation methods. We base our loss on a sphere
proxy of human geometry, which allows us to calculate a self-intersection loss 98 %
faster and uses 83 % less memory than comparable methods based on triangular meshes.
The loss is agnostic to the specific approach, and we add it to the training of the re-
cent human motion generation methods human motion diffusion model (MDM) and Mo-
Mask. Our extensive experiments show a reduction of self-intersections in generated
motions of up to 49 % while improving other evaluation metrics. The code is available
athttps://github.com/boschresearch/humansphereproxy.

1 Introduction

Generating realistic 3D human motions is an essential task in virtual reality applications [43],
video games [40], computer animation [24], and synthetic data generation for deep learn-
ing [54]. Most recent approaches [9, 15, 49] rely on data-driven approaches using transformer-
based [55] diffusion models [17, 44, 45] or variational autoencoder (VAE) [21, 53]. Con-
sidering metrics on current evaluation benchmarks [14, 35], human motion generation has
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made tremendous progress over the years. However, actually looking at the generated mo-
tions is often unsatisfying. Many generated motions contain self-intersections, i.e., body
parts interpenetrating, which are strong artifacts that seriously impair the perceived motion
quality. This observation highlights two things: 1) Recent human motion generation ap-
proaches do not focus enough on the physical plausibility of the generated motions, and 2)
current evaluation metrics fail to capture the quality of the generated motions sufficiently.

We aim to avoid self-intersections in generated human motions by explicitly penalizing
self-intersections while training human motion generation methods. In the related field of
3D human pose and shape estimation, some approaches [6, 31] implement such a loss based
on triangular meshes of humans. However, they focus on optimizing the poses of a human
for a single motion, while recent human motion generation methods use data batches with
many motions. The runtime and memory consumption of these approaches does not scale
to this scenario, prohibiting their use. Instead, we propose to approximate meshes used
for training with a set of spheres. This approximation has several advantages. First, only
a few hundred spheres are necessary to approximate a mesh with thousands of triangles.
Thus, we can significantly reduce the memory cost of the geometry representation and the
number of intersection checks between geometric primitives. Second, calculating if two
spheres intersect is simpler than calculating triangle intersections. Therefore, we can use
this sphere proxy to efficiently compute our novel self-intersection loss, which enables us
to apply it to recent human motion generation methods. Our extensive experiments show
a significant reduction in generated self-intersections while improving most other metrics.
Our contributions can be summarized as follows:

» we introduce a novel self-intersection loss, based on a sphere approximation of human
geometry, which reduces the memory cost by 83 % and the runtime by 98 % compared
to previous approaches, making the self-intersection loss applicable in the first place,

¢ we show that our novel self-intersection loss reduces self-intersections in human mo-
tion generation by up to 49 % while improving other evaluation metrics,

* and we introduce a novel voxel-based metric measuring the severity of self-intersections
to guide human motion generation towards improving perceived motion quality.

2 Related Work

Human Motion Generation Recent human motion generation methods use learning ap-
proaches on motion capture data [5, 14, 25, 56] to either learn the complete manifold of hu-
man motions [18, 37, 64] or condition the generation process on an action class [7, 32, 63],
audio [1, 28], a motion prefix [13, 58], or text [8, 10, 14, 15, 33, 39, 49, 61, 62].
MotionDiffuse [63] estimates the noise of a noisy motion to iteratively obtain a clean
motion [17, 44, 45]. TEMOS [33] uses a VAE [21] by aligning the continuous latent space of
a text encoder and a motion encoder, and generates motions with a motion decoder. Motion
latent diffusion (MLD) [8] applies diffusion models in the latent space of a VAE. Most recent
approaches focus on the controllability of motion generation [2, 3, 34, 42, 57]. In contrast,
we focus on the perceived motion quality by avoiding self-intersections in generated motions.

Human Geometry Representations Most commonly, human geometries are represented
using triangular meshes as in the Skinned Multi-Person Linear (SMPL) model [23, 29, 31,
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Figure 1: We make human motion generation self-intersection-aware by proposing a novel
self-intersection loss. Given a condition embedding c, an arbitrary human motion generation
method G generates a motion x'*V. Relying on SMPL shape parameters f3, we obtain our
sphere proxy in default pose and employ the blend weight matrix B to apply the generated
poses to the sphere proxy. Our novel self-intersection loss Lgr is calculated on the sphere
intersections of the posed sphere proxy and added to Lg of G. Red indicates intersecting
spheres.

41]. Some approaches [4, 31, 52] calculate self-intersections for triangular meshes, but
they have a high runtime, which can be improved at the cost of memory usage by using
space partitioning methods [19, 31, 48]. Other representations include signed distance fields
(SDF) [12, 30], 3D point clouds [11], or occupancy maps [26]. Finally, human meshes can
be approximated by simple geometric primitives. SMPLify [6] uses a rough approximation
with a set of capsules. Stoll et al. [46] use a sum of 3D Gaussians to represent human
geometry. DualSDF [16] approximates arbitrary geometric shapes using spheres. We extend
DualSDF by approximating human meshes with a set of spheres and attaching them to an
underlying skeleton.

Physically Grounded Motion Generation Enhancing the physical plausibility of gener-
ated motions is a growing area of related research. PhysDiff [59] generates physically plausi-
ble motions by projecting intermediate noisy motions generated by motion diffusion models
into a physics engine. Several approaches [9, 49] apply geometric losses based on the joints
to the training of human motion generation models. HUMOS [51] uses a foot-sliding loss,
ground penetration loss, and floating loss based on vertex locations. 3D human pose and
shape estimation [22, 36, 47, 50] aims to recover the SMPL [23] pose and shape parameters
given a single image. In this field, losses to enforce physical constraints are frequently used,
like a pose prior to penalize unnatural bends of knees and elbows [6], and self-intersection
losses [6, 27, 31]. We follow this line of work by explicitly penalizing self-intersections
using a novel loss.

3 Methodology

We aim to generate physically plausible 3D human motions by explicitly penalizing self-
intersections. Our approach is agnostic to the specific human motion generation method,
and we explain the general setting in Sec. 3.1. We base our novel self-intersection loss on
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a sphere approximation of the human geometry, which we call sphere proxy and describe it
in Sec. 3.2. Fig. 1 shows an overview of our approach. The advantage of the sphere proxy
is that self-intersections can be computed significantly more efficiently compared to using
triangular meshes. Sec. 3.3 describes our novel self-intersection loss and how we integrate it
into the model training.

3.1 Human Motion Generation

Human motion generation aims to generate natural and diverse human motions. Formally, a
motion x!* is a discrete temporal sequence of length N € N of individual poses x € R/*P
with J € N denoting the number of joints of the underlying skeleton, D € N* denoting the
dimension of the pose representation, and n € N* denoting the temporal index. A pose x"
can be defined by joint locations, rotations, velocities, or a combination of them. Usually,
the motion generation process is conditioned on the embedding of some real-world signal
c € RE, with L € N* denoting the dimension of the embedding space, like a text description
or a 3D point cloud. However, unconditioned generation is also possible. The motion is
generated by some generative model G and depends on the specific implementation.

3.2 Human Sphere Proxy

We follow DualSDF [16] to obtain a sphere approximation of human geometries. DualSDF
uses a set of S € Nt spheres S = {(z/,7)|i = 1,...,S} with centers z' € R? and radii ' € R
to approximate a 3D geometry X using SDFs. Given a point p € R3, the SDF specifies the
distance of that point to the closest surface of the geometry. The sign encodes whether the
point lies inside (negative) or outside (positive) the surface. Given a human mesh X, we
sample K € N* 3D points p*,k = 1,...,K, and corresponding SDF values d% € R. For a set
of spheres S, the value of the SDF at point p is defined as the minimum over the SDF values
of the individual spheres
ds = llg.igsd;pherm with d;phere = Hp _zl||2 —rh. ey
DualSDF implements a neural network to predict the sphere parameters, following the frame-
work of variational autodecoder (VAD) [60] by learning a Gaussian latent space. However,
a learned latent space would require an optimization process to find the latent vector that
corresponds to the sphere proxy of a given mesh. Instead, we use the SMPL [23] shape pa-
rameters B € RV, U € NT denoting the number of SMPL shape parameters, as input to our
neural network, because they have semantic meaning and they already approximately follow
a Gaussian distribution. We use several loss terms to train the neural network. First of all,
we approximate the sampled SDF values of the mesh X using the set of spheres S
1 & | max(at,0) ak <o,
ESDF_K,;{|d§—d§| dk > 0. @
For points pk inside the 3D shape X, the loss is truncated to zero [16, 30]. Furthermore,
we add an emptiness loss. We want to approximate the surface of the original mesh, so all
spheres should be placed within that surface, which we achieve by checking that each sphere
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contains at least one point p* sampled from inside the mesh.

1 Jmax (|[p*—2||-r,0) df <0,
Eemptiness = 51:21 {0 d; >0, ¥

where k = argmin (||p¥ — z'||) is the index of the closest sampled point to sphere center z'.
Additionally, the spheres should be distributed equally within the boundaries of the mesh to
approximate all body parts with the same level of detail, which we achieve with an inter-
section loss. If the distance between the centers z' and z' of two spheres i and i is smaller
than the sum of their radii # and ', the spheres are intersecting. The intersection distance is
given by

b =max(r 4+ — ||z =27 ||, 0). )

Minimizing the intersection distance b pushes the spheres apart from each other, filling the
space governed by the boundaries of the mesh. Formally, the loss is given by

1S S
Lis = @ Yy b (3)
i=1i=i+1

1

The overall loss to train the sphere proxy is defined by

£SP = LSDF + )Lemptinessﬁemptiness + )LISl:ISa (6)

where Aemptiness, A1s € R are hyperparameters.

We use SMPL meshes in default pose to train the sphere proxy and attach the spheres to
the SMPL skeleton to apply a pose x”. While learning a posed sphere proxy is also possible,
it would require substantially more training resources, as the training data would need to
capture various poses sufficiently. In SMPL, joint locations are regressed, given the vertex
locations. Instead, we train a simple neural network to predict them, given SMPL shape
parameters using an L loss on joint locations. To attach the spheres to the skeleton, we
follow the standard linear blend skinning approach [24]. The sphere’s movement is governed
by a blend weight matrix BS € RS*/. Similarly, the SMPL model also has a blend weight
matrix BX € RV*/, where V is the number of vertices of the mesh. To obtain BY, we calculate
the g € N nearest vertices of the given mesh to the surface of each sphere. The blend
weights of a sphere are then simply the mean of the blend weights of the neighboring vertices.
Finally, these blend weight matrices are calculated for all meshes in the training data, and
subsequently, we take their mean to obtain one blend weight matrix BS for the sphere proxy.
The sphere centers z become dependent on a given pose x", z = z(x"). However, we omit
this dependency in the following for ease of notation.

3.3 Preventing Self-Intersections

We use our sphere proxy to propose a novel self-intersection loss. At some point during the
training of every human motion generation method G, a human motion x'*V is generated.
We apply each generated pose to the sphere proxy and calculate which spheres intersect.
However, it is not ideal to calculate the intersections between all sphere pairs. Neighboring
spheres will always intersect, while spheres representing the same body part will never in-
tersect. We utilize a data-driven approach to determine the spheres that always intersect by
recording all sphere intersections given the poses of a human motion dataset. Sphere pairs
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intersecting in more than 90% of the poses can be seen as body model inaccuracies and are
excluded from the loss calculation. We utilize the blend weight matrix B to determine the
spheres belonging to the same body part by assigning each sphere to the joint for which the
blend weight is the biggest. Sphere pairs assigned to the same joint are excluded from the
loss calculation. We denote the remaining set of sphere pairs checked in the self-intersection
loss as W and define the self-intersection loss using the intersection distance between sphere

pairs
1 N

Li=vY ¥ (b’?"')z. @

n=1 (i,i")\eW
Note, that b0’ is dependent on a given pose x". The overall training loss for G becomes
L= Ls+ AsiLsr, (®)

where L is the training loss of G and Ag; € R is a hyperparameter.

4 Experiments

We evaluate our methods on the text-to-motion task on the datasets HumanML3D [14] and
KIT-ML [35]. We use the motion representation proposed by Guo et al. [14] but also recover
SMPL [23] joint rotations to pose our sphere proxy - details can be found in the supple-
mentary material. KIT-ML follows a different skeletal structure than HumanML3D, but
TEMOS [33] provides correspondences between the KIT-ML and SMPL joints while we
interpolate missing joints. HumanML3D and KIT-ML represent motions using the skeleton
of one target motion. We apply SMPLIify [6] to each target motion to get one set of SMPL
shape parameters for each dataset to obtain our sphere proxy.

We use the metrics R Precision, Fréchet Inception Distance (FID), Multimodal distance,
Diversity, and MultiModality to evaluate our approach as commonly used in the litera-
ture [14]. In addition, we propose a novel metric, Self-Intersect (SI), to measure the severity
of self-intersections in the generated motions. SI approximates the mean self-intersection
volume by generating a mesh for every generated pose, scaling each mesh to fit into a
sphere with radius 1 m, subdividing the space within the sphere into voxels with edge length
v =10.06 cm, and determining if the voxel lies within a region of self-intersection. Values are
reported in cubic centimeters. Full details on S/ can be found in the supplementary material.

4.1 Motion Generation Methods

We integrate our novel self-intersection loss into the training of the recent human motion
generation methods human motion diffusion model (MDM) [49] and MoMask [15], which we
briefly explain in the following. We call our modified versions SIA-MDM and SIA-MoMask,
with SIA being short for self-intersection-aware.

MDM follows the diffusion model framework by learning a reverse diffusion process.
Given a noisy motion x;* at noise step # € N*, MDM implements G with a Transformer [55]
encoder-only architecture and is trained to predict the clean motion 5c(]):N , given the condition
embedding ¢ and the noise step . During sampling, X(l):N is passed through the forward
diffusion process to obtain x}:f\{ and this procedure is iterated until x(l):N is obtained. To
generate a motion, xlT:N ~ N(0,I) is sampled from a Gaussian distribution and iteratively
denoised, where T denotes the maximal noise step.
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RPrecision R Precision R Precision Multimodal _— . .
Dataset Method top 11 top 2t top 3t FID| Dist) Diversity— MultiModality 1 SIL

Real 0.51150:003 0.703*+0:003 0.797+0:002 (,002+0-000 2.974*0.008 9.503+0:065 - 447+
MLD [8] 0.481+0-003 0.673+0:003 0.772+0:002 (), 473+0013 3.196+0.010 9.724+0.082 2.413+007
MotionDiffuse [63]  0.491+0-001 0.681+0-001 0.782+0:001 (,630+0.001 3.113+0001 9.410+0.049 1.553+0042

HumanML3D ReMoDiffuse [62] ~ 0.510+0:005 0.698+0.000 0.795+000+  0,103+0-004 2.974+0.016 9.018+0:075 1.795+0:043 -
MDM [49] 0.418*0-005 0.604+0-005 0.707+0:004  (0.489+0025 3.631+0023 9.449+0.066 29730111 619+
MoMask [15] 0.521+0002 0.713+0.002 0.807+0002  0,045+0-002 2.958+0.008 9.624:+0.080 1.24]+0:040 31642
SIA-MDM (Ours) 0.435+0.005 0.628+0.006 0.731+0006 .265+0024 3.462+0:020 9.568+0-086 2.893+0.075 382409
SIA-MoMask (Ours) ~ 0.525+0:003 0.717+0003 0.81350002 0,068+0-002 2.933+0006 9.691:+0:0%2 1.198+0.041 290+02
Real 0.424+0:003 0.649+0:006 0.799+0:006 (0,031 +0:004 2.788+0.012 11.080+0:07 - 778+
MLD [8] 0.390+0:008 0.609+0-008 0.734+0:007 0.404+0:027 3.204%0:027 10.800%0-117 2.192+0.071 -
MotionDiffuse [63] ~ 0.417+0:004 0.621+0004 0.739+0004 ] 954+0.062 2.958+0.005 11.1000143  ,730+0013

KIT-ML ReMoDiffuse [62] 0.427+0014 0.641+0:004 076550055 (,155+0-006 2.814+0012 10.800*0-105 1.239+0.028 -
MDM [49] 04040005 0.607+0004 073120004 (530046 3.0960024 10.732%0105 1 8o6*0-176 597407
MoMask [15] 0.433+0.007 0.656+0-005 0.78150005  9.p04*001 2.779+002 10.780+0080  ,131+0.043 930+7
SIA-MDM (Ours) 0.416+0.005 0.635+0.000 0.755+0006 031+0.021 2.981+0:024 10.922+0-107 3 234:+0.080 441405
SIA-MoMask (Ours) ~ 0.437+0005 0.656+0-006 0.776+0005  (.316+0017 2.722+0017 10.709+0-120 111140034 472403

Table 1: Text-to-motion results on HumanML3D [14] and KIT-ML [35]. All experiments
are repeated for 20 random seeds. =+ indicates the 95% confidence interval. Bold indicates
the best result, while underscore indicates the second best. — indicates that closer to ’Real’
is better. Our self-intersection-aware methods significantly improve the respective baselines
in most metrics.

MoMask follows the vector quantized VAE (VQ-VAE) [53] framework and implements
G with three components. First, a residual VQ-VAE is trained, which encodes a motion xIN
using a hierarchy of quantization layers of discrete motion tokens corresponding to entries
of a learned codebook. Second, a masked transformer is trained to generate motion tokens
of the base layer of the quantization hierarchy given the condition embedding ¢. Third, a
residual transformer is trained to generate the motion tokens of the remaining quantization
layers given c. During sampling, the motion tokens of the quantization hierarchy are pro-
gressively generated using the masked and residual transformer given c. Subsequently, the
motion tokens are decoded using the decoder of the residual VQ-VAE.

4.2 Implementation Details

Sphere Proxy The sphere proxy is based on the gender-neutral SMPL-H [41] model with-
out the hand joints and SMPL shape parameters of dimension U = 10 in a range between
—5.0 and 5.0, following Guo et al. [14]. We randomly sample 8,000 sets of SMPL shape pa-
rameters and use the corresponding joint locations to train the joint regressor. It is trained for
300 epochs with an initial learning rate of le-4, which is decayed by 0.1 every 100 epochs.
We randomly sample 800 sets of SMPL shape parameters to train the sphere regressor. For
each corresponding mesh, we sample K = 750,000 points with associated SDF values, of
which 250,000 points are sampled in a sphere around the mesh, and 500,000 points are sam-
pled closely to the surface. The sphere regressor is trained for 2,800 epochs with an initial
learning rate of 5e-4, which is decayed by 0.5 every 700 epochs. Each batch contains 16,384
SDF samples per mesh, of which 10% are sphere samples, and of the remaining points,
50% correspond to hands and feet, as these body parts have more details. We empirically
set Aemptiness = 10 and A;s = 0.1. Both models are trained using the Adam [20] optimizer
with a batch size of 64. The architectures of both models are shown in the supplementary
material. We use the mean of the blend weights of the g = 8 nearest neighbor vertices and
only keep the four most significant values following SMPL [23]. Our sphere proxy contains
S = 192 spheres unless stated otherwise. For the intersection reduction, we use the poses of
the training split of the HumanML3D dataset.
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"a person walks backward in a "a person waves a friendly  "a person reaching down and "a man sits down and then
counterclockwise circle" hello." picking something up." stays still."
SIA-MoMask (Ours)

= ‘ L '] by X \’
. r z AR~ ‘ p= LA~ NS “

SI=502em® ' SI=317 om® SI=403 cm3
MoMask

S1=3236 cm®  SI=1209cm?

Figure 2: Visual Comparison between motions generated by SIA-MoMask (Ours) and Mo-
Mask [15] given text prompts from the HumanML3D [14] test set. Red patches indicate
self-intersections. SI indicates the mean self-intersection volume. SIA-MoMask generates
significantly fewer self-intersections while semantically following the textual description.

Motion Generation Methods We run our experiments on SIA-MDM and SIA-MoMask
using the parameters given in the available code of MDM and MoMask, respectively. SIA-
MDM is trained for 600,000 steps with A;s = 0.01 on HumanML3D and for 200,000 steps
with As; = 0.0001 on KIT-ML. STA-MoMask integrates our novel loss into the residual VQ-
VAE training with Ag; = 0.01 for HumanML3D, and into the training of all components with
Ast = 0.000001 for KIT-ML. Text conditions are embedded using CLIP [38].

4.3 Results

We compare the results obtained with STA-MDM and SIA-MoMask to the results of MDM!
and MoMask in Tab. 1. Both self-intersection-aware methods generate significantly fewer
self-intersections than the respective baselines, emphasizing the effectiveness and generality
of our novel loss. Additionally, most other metrics improve, highlighting the benefit of focus-
ing on the physical plausibility of generated motions. Furthermore, we note the substantial
amount of self-intersections in the ground truth data, the origin of which we discuss in the
supplementary material. Our novel self-intersection loss facilitates the generation of motions
containing few self-intersections, even if they are present in the ground truth data. However,
we acknowledge that MDM and MoMask also generate fewer self-intersections than the
ground truth motions on KIT-ML and HumanML3D, respectively, which we attribute to the
desired diversity of motion generation, thus deviating from the ground truth. Nevertheless,
focusing solely on optimizing FID, often associated with motion quality, does not result
in the most realistic motions. With FID approaching the ground truth data, the amount of
generated self-intersections is also expected to approach the ground truth self-intersections,
highlighting the limitation of the FID metric. Therefore, evaluating FID together with SI
yields a better judgment of motion quality. Fig. 2 and the supplementary material show mo-

IThe evaluation script of the original publication of MDM contained errors. All results are obtained following
bug fixes detailed at https://github.com/GuyTevet/motion-diffusion-model/issues/182
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tions generated by MoMask and SIA-MoMask given text prompts of the HumanML3D test
set, which confirms the improved motion quality compared to the baseline models.

4.4 Ablation Studies

We ablate design choices on the HumanML3D [14] dataset using SIA-MDM and focus on
the metrics FID, MultiModality, and SI. All results are shown in Tab. 2.

Method FID} MultiModality} SI)
No intersection reduction ~ 0.841+0-058 3 (g3+0.067 715+12 z
128 spheres 0.411%0056 2 711+0.059 306%!1
256 spheres 0.301+0038 2 754+0.061 331405
SIA-MDM (Ours) 0.265%0024 2 893+0.075 382409 .
MDM [49] 0.489%0:025 2 973+0.111 619*!1 R S

Table 2: Ablation studies on HumanML3D [14] us- Figur~e 3 Comparison of the com-
ing SIA-MDM. All experiments are repeated for 20 ~ putational efficiency of the self-

random seeds. + indicates the 95% confidence in-  intersection loss between meshes
terval. and the sphere proxy.

Influence of the self-intersection method In Fig. 3, we compare the memory usage and
runtime of our novel loss to the implementation of SMPLify-X [31] using meshes by ap-
plying each loss to 1, 2, 4, 8, and 16 frames of each motion. Memory usage and runtime
increase dramatically with the number of frames for the mesh-based approach, prohibiting
its use in human motion generation. In contrast, the runtime of the sphere proxy stays almost
constant while the memory consumption is reasonable, even when using all frames.

Influence of intersection reduction We use all sphere pairs to calculate our self-intersection
loss and compare it to our sphere pair reduction. Using all sphere pairs results in worse per-
formance than using the self-intersection reduction and no self-intersection loss at all. We
believe the additional self-intersections during the loss computation result in a strong but un-
clear gradient signal hindering model optimization. Additionally, penalizing realistic poses
that contain self-intersections due to body model inaccuracies might impair model perfor-
mance. This result highlights the importance of intersection reduction.

Influence of number of spheres We compare our sphere proxy to versions using 128 and
256 spheres. All versions improve MDM in FID and SI. However, 192 spheres yield the best
trade-off between FID and SI; hence, we use this version in our experiments.

Evaluation of the sphere proxy We randomly sample 150 sets of SMPL shape parameters
and use the corresponding meshes as a test set for our sphere proxy. We compute the SDF
value of each mesh vertex for the corresponding sphere proxy and take the mean of the
absolute SDF values for all vertices. The mean distance per vertex is approximately 0.6 cm,
verifying the sphere proxy as a valid approximation of the surface of human meshes. The
supplementary material provides a thorough analysis of the sphere proxy.
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5 Conclusion

This paper investigates the problem of self-intersections in human motion generation, and
we show that even state-of-the-art human motion generation approaches suffer from them,
limiting the perceived motion quality. To mitigate this problem, we propose a sphere proxy
of human geometry and show computational superiority in calculating self-intersections re-
garding runtime and memory usage compared to triangular meshes. Integrating our novel
self-intersection loss into the training of MDM [49] and MoMask [15] significantly reduces
self-intersections in generated motions while improving other evaluation metrics and the per-
ceived motion quality, as we show with visual examples. Future research can use our sphere
proxy to model contact between humans interacting with a scene or other humans. Finally,
we acknowledge that the sphere proxy is only an approximation of human geometry, and
some unrealistic self-intersections are still generated. Future research could further improve
the sphere proxy, e.g., by incorporating hand and finger motions.

Acknowledgement Juergen Gall has been supported by the ERC Consolidator Grant FORHUE
(101044724).
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