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Abstract

This paper introduces a novel framework to learn data association for multi-object
tracking in a self-supervised manner. Fully-supervised learning methods are known to
achieve excellent tracking performances, but acquiring identity-level annotations is te-
dious and time-consuming. Motivated by the fact that in real-world scenarios object
motion can be usually represented by a Markov process, we present a novel expectation
maximization (EM) algorithm that trains a neural network to associate detections for
tracking, without requiring prior knowledge of their temporal correspondences. At the
core of our method lies a neural Kalman filter, with an observation model conditioned on
associations of detections parameterized by a neural network. Given a batch of frames as
input, data associations between detections from adjacent frames are predicted by a neu-
ral network followed by a Sinkhorn normalization that determines the assignment prob-
abilities of detections to states. Kalman smoothing is then used to obtain the marginal
probability of observations given the inferred states, producing a training objective to
maximize this marginal probability using gradient descent. The proposed framework
is fully differentiable, allowing the underlying neural model to be trained end-to-end.
We evaluate our approach on the challenging MOT17, MOT20, and BDD100K datasets
and achieve state-of-the-art results in comparison to self-supervised trackers using public
detections.

1 Introduction

Multi-object tracking (MOT) is highly relevant for many applications ranging from au-
tonomous driving to understanding the behavior of animals. Thanks to the rapid development
of object detection algorithms [8, 29, 33], tracking-by-detection [11, 14, 19] has become the
dominant paradigm for multi-object tracking. Given an input video, a set of detection hy-
potheses is first produced for each frame and the goal of tracking is to link these detection
hypotheses across time, in order to generate plausible motion trajectories.
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Figure 1: Given observations
Z,.7, a neural network is trained
to predict the permutations
P,.7 that assign observations
to states Xj.7, which define
tracks. The network is trained
self-supervised, i.e., without
i given associations between zi.7
. J and x;.7. After training, the
network is used to associate
detections in MOT.

A large number of learning-based methods have focused on the fully-supervised MOT
setting [6, 11, 19]. These approaches assume that a training set with detections together with
the associations between these detections are provided, and the goal is to train a model that
can predict data association between detections during inference. While these approaches
achieve strong performance on standard tracking benchmarks [7, 26], they demand costly la-
beling and annotation burdens that can be expensive to scale. In contrast to fully-supervised
methods, self-supervised approaches seek to train a model that is able to temporally asso-
ciate noisy detections, without requiring knowledge of the data association between them
during training. Following this trend, Favyen et al. [1] designed a method that takes two
modalities as input. While the first contains only bounding-box coordinates, the second con-
tains appearance information solely. During training, the two inputs are forced to output the
same association results. Similarly, Lu et al. [21] suggest to drop several detections within a
track and utilize a path consistency constraint to train a network for association. This method
achieves state-of-the-art performance in the self-supervised setting, but requires a number of
heuristics and involves a complex removal strategy for training, which makes the training
very expensive.

In this work, we introduce a novel framework to learn data association in a self-supervised
manner. Motivated by the fact that object motion can be usually represented by a smooth
Markov process, we propose an Expectation Maximization (EM) algorithm that finds asso-
ciations, which rewards locally smooth trajectories over non-smooth associations. The core
of our method relies on a neural Kalman filter [16, 18] and a differentiable assignment mech-
anism. The Kalman filter provides a principled way to model uncertainty in an efficient way
since densities are evaluated in closed form. In particular, our Kalman filter’s motion model
is realized by a random walk process while the observation model is parameterized by a
neural network that provides the assignment probabilities of the observations to states via a
permutation matrix. In other words, the permutation matrix associates detections in a video
to the corresponding tracks, as illustrated in Fig. 1. Since the permutation matrix should
be doubly-stochastic, we propose to add a Sinkhorn layer into the system. Kalman smooth-
ing [28] is then used to obtain the marginal probability of observations given inferred state
trajectories, leading to a training objective that maximizes this marginal. As the Sinkhorn
iterations merely involve normalization across rows and columns for several steps, the entire
procedure is fully differentiable, allowing the underlying neural model to be trained in an
end-to-end manner using gradient descent.

We further show how this approach can be used to successfully fine-tune an appearance
model on the MOT17 [26] training set using association results produced by the trained
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association model, such that it enables better association abilities. During inference, we
follow an online Kalman filter tracking paradigm [32] where the detections within the current
frame are matched to the predicted detections from the previous frame using the learned
association network.

In comparison to prior works [1, 21], our approach provides a principled and probabilistic
way for self-supervised learning. The model can be trained in just a few minutes, which
is much faster than [1, 21], which require about 24 hours for training. We evaluate our
approach on the MOT17, MOT20 [7, 26], and BDD100K [35] datasets, and we show that
our approach achieves better or comparable results than existing self-supervised multi-object
tracking approaches. Our contributions are summarized as follows:

* We propose a novel self-supervised framework that embraces the Expectation Maxi-
mization algorithm to learn data association for MOT.

* The framework enables us to learn motion as well as appearance affinity together
for robust data association and the learned association network naturally fits into the
online tracking paradigm.

e Qur approach achieves state-of-the-art performance among existing self-supervised
MOT methods on the challenging MOT17 and MOT?20 datasets with public detections
and on the BDD100K [35] dataset.

2 Related Work

Self-Supervised Multi-Object Tracking. Self-supervised MOT has the advantage that the
training of data association models does not require expensive identity-level supervision,
compared to its fully-supervised counterpart. SORT [4] adopts a simple Intersection-over-
Union (IoU) as an affinity metric for data association. This approach, however, is sensitive
to occlusions. Following this trend, Yang et al. [34] present a heuristic buffered IoU (BIoU)
metric for data association. Karthik et al. [13] utilize SORT [4] to generate pseudo track
labels for training an appearance model which is then used in an online tracking framework.
Favyen et al. [1] propose an interesting input masking strategy that enforces mutual consis-
tency between two given input modalities as an objective during training, an approach that
achieves decent results for data association. Lin et al. [20] present a dynamical recurrent
variational autoencoder architecture, but this approach requires pre-training of motion mod-
els, while the data association between states and observations admits a simple closed-form
solution, it can only track a fixed number of objects. An interesting recent work is PKF [5],
which assigns observations to a given track in a soft, probabilistic way, at the sacrifice of
MOTA metirc. In contrast to these works, our approach provides a principled objective and
it requires only minutes to train.

3 Neural Data Association using Expectation
Maximisation
In this work, we propose a self-supervised learning approach for multi-object tracking. This

means that only a set of unlabeled detections in a batch of frames are given and the goal is to
train a neural network such that it can predict the associations of these detections accurately.
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Figure 2: The proposed self-supervised learning framework. Given unlabeled detections
Z;1+2, we train a neural network gg that predicts the score matrices S;.;+» between detections
from every pair of adjacent frames and for the first frame between all detections z, of the
same frame. For S;, the values should thus be high on the diagonal but low everywhere else.
Sinkhorn normalization is then applied to S;.;+2 to produce the doubly stochastic association
matrix A2, which associates detections between frames The permutation matrices Py, »
then assign the detections to the states X, where the state x£, , , represents a track of an object
k. Kalman smoothing combined with the predicted P;.;;, then reconstructs the detections,
which are compared with original detections to define the loss in eq. (8). This loss is then
back-propagated to update the parameters of the network gg. We only show three frames for
simplicity, but the framework works on longer sequences.

We rephrase this problem as a Kalman filtering problem as shown in Fig. 1. The un-
known states of K objects at the #-th time step are represented as x, € RX*?. Each object is
represented by its d-dimensional state vector, containing its x,y central coordinates as well
as its velocity in the image plane, i.e.x = (x,y,%,y). The track of an object k over T frames is
thus indicated by x’l‘:T. 7, € RK xd’ represents the observed detections where each detection
at frame ¢ is represented by a d’-dimensional observation vector, containing bounding box
coordinates and appearance features. In contrast to a classical Kalman filtering problem, we
do not know to which state x¥ an observation z/ belongs to. This association is modeled by
a permutation matrix P, which assigns the observations z; to the states x;. For training, we
assume that all K objects are visible in all T frames and we will discuss occlusions or false
positive detections later.

Given P;, we can update the states using a linear Kalman filter [ 18] with Gaussian noise:

p(Xi[xi—1) = N (x:Fx,-1,Q1), (1)
I’(Zt|Xt,Pt) = N(ZI;HIPIXHRT)v 2)

where Q, and R, are Gaussian noise, H; is the linear mapping from state space to observation
space, and x; = Fx;_| is the motion model. While we use a linear model, the approach can be
extended to non-linear models or a learned dynamic model. P, will be estimated by a neural
network gg and we will learn the parameters of the network using expectation maximisation
and back propagation.
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3.1 Maximum Likelihood Learning Framework

Given the linear Gaussian motion and observation models (egs. (1) and (2)), we can compute
a predictive posterior, represented by state’s mean fi, and covariance X, at timestep ¢, in
closed form using a Kalman filter prediction step conditioned on a series of permutations
P

P(Xt|Z1:—1,P1—1) :/P(Xz|Xt—1)p(Xt—1\let—l,Plzr—l)dXt—l
:N(XﬁFH;q)FZt—IFT +Qz)
=N (%3 0,,%). (3)

Here, p(x,—1|214—1,P14—1) is the Gaussian posterior at time f — 1 from the last Kalman
filter update step. Once the observations z; are available at the current timestamp ¢, the
update equation for the posterior is given by:

P(Zz|Xt’Pt)P(Xt|Zl:t717P1:t—1)

X¢ |21, P1y) = “4)
p( t| e “) p(zt|zlzt71P1:t)
:N(Xt;“tvzt)
P(Zt|Z1:t—l7Pl:z) :/P(Zt|Xr7Pz)P(Xt|Zl:r—17Pl:zfl)dxz @)

:N(Zt;HtPtﬂ;, (HIPI)it(HIPI)T JFR[)-

The derivation above uses a Kalman filter that makes predictions based on a history of
observations. During training, we use Kalman smoothing [28] to calculate the marginal as
in eq. (6), where i, and ¥, denote the smoothed mean and covariance of the current state x;,
respectively:

p(z|z17,PrT) :/p(ztaxt|zlzT7P1:T)dXt (6)
Z/P(Zz\xt,llzﬂplzT)P(Xz\ler,PlzT)dXz
:/N(zt;H,P,x,,R,)N(x,;/lt,i,)dx,
=N (z:;H,P,fi,,(H,P,)E, (H,P,)T +R,).

This uses both a forward and backward process to condition on all observations zi.r,
rather than conditioning only on prior observations at a given time step z;;. It not only
reduces uncertainty but also helps to ensure forward and backward temporal consistency in
the associations of z;.7, providing more robust training.

Estimating P.7. We delineate the detailed implementation pipeline in Fig. 2. Given detec-
tions ZLI and z/ from the frames ¢ — 1 and ¢, respectively, a network predicts their similarity
Sij =86 (ZL1 ,z} ), with a higher value of s;; indicating a higher similarity. By iterating over
all detection pairs, we obtain a score matrix S;. From the score matrix, the Sinkhorn layer
computes the association matrix A, that associates detections between adjacent frames. As
the permutation matrix P, is required for training, we initialize the states in the first frame
using the observations from the first frame, i.e., X; = z;, making A as the identity matrix.
P, is then obtained by P, = Hil:, A;.

Sinkhorn Layer. In general, the permutation P is a hard assignment matrix that makes it
non-trivial to back-propagate the loss through it. It is therefore desirable to make it a “soft”
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Algorithm 1 The proposed procedure for learning data association.

Input: Observations z,.7, learning rate o
Output: go(-)

1: Initialize A with identity matrix, MLP with 6y
2: for n =1 to number of iterations N do

3: fort=2to T do

4: St =go(z—1,%)

5: Predict A; using Sinkhorn iteration (eq. (7))
6: P =1, A

7 Compute p(X;|z1;—1,P1,—1) using eq. (3)

8 Compute p(x;|z1.,Py./) using eq. (4)

9 fort=Tto1do
10: Compute p(z|z;.7,P1.7) using eq. (6)
11: Compute L:f):tT:l10gp(z,|zl;T,P1:T)
120 61 =6,—a%s

Return Learned MLP gg, (-)

version to enable gradient-based end-to-end training. The permutation matrix P, however,
needs to be doubly stochastic, i.e., its rows and columns should sum to one. To address this,
we propose to add a Sinkhorn layer [24, 31] to normalize the score matrix S:

XO(S) = CXP(S), XI(S) = 7:‘0/(7;0}1/()(17] (S))) A= hm[—)oeXl(S). (7)

It applies the Sinkhorn operator [31] X to the square matrix S. In particular, 7, (-) and
Teor(+) indicate row-wise and column-wise normalization operations, respectively. Repeat-
ing this for several iterations creates a doubly stochastic data association matrix A between
detections. By combining eq. (6) and Py.7, which depends on S;.7 and thus gg, we define
our training objective for 8, which is optimized by gradient descent:

argming — Y., log N (z;; H,P; i, (H,P)E,(HP,)T +R,). 8)

The detailed training algorithm is shown in Algorithm 1. Intuitively, this can be seen
as an expectation maximisation (EM) approach that alternates between inferring underlying
state trajectories, and identifying permutations mapping observations to trajectories.
Learning the Appearance Model. The aforementioned procedure only involves learning
association between detections from adjacent frames using relative geometrical features.
However, it is also desirable to learn an appearance model in order to associate objects when
geometrical information is unreliable due to abrupt camera motion. To this end, we use the
inferred associations from the previous step to finetune an appearance model ¢g(-) parame-
terized by the ImageNet pretrained ResNet-50 [9].

Given a training sample that contains K x T detections, we first calculate the permutation
matrix Pr € RE*K_guch that the rows indicate detections at the 7-th and the columns denote
detections at the first frame. Each element p;; represents the probability that detection i at
frame T is associated to the detection j at frame 1. We also construct a similarity matrix
Ur € RE*K using the cosine similarity of appearance features, i.e.,

__ 9o(zp)" 9o (2])
190 (27) /|90 (21) 1>

©))

M,'j
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where Ur is normalized row-wise through softmax.

Intuitively, if the i-th detection at frame T is associated with the j-th detection at the first
frame, then their appearance similarity should also be high. Since P is a soft permutation
matrix, we propose to minimize the KL-divergence between Pr and U7 as a second loss:

Dy (Pr||U) = Z Zp,,log bir. (10)
i=1j=
Minimizing this loss forces the appearance model to learn appearance features that agree
with the learned associations. The rationale to choose appearance pairs that are temporally
T frames apart is to capture appearance changes over a longer period instead of incremental
changes between two frames.
Preprocessing Detections. In reality, objects frequently enter and exit the scene, and false
positive and negative detections may occur. We therefore preprocess the detections such that
each training batch contains exactly K objects throughout 7', although an explicit object birth
and death handling can be adopted [25].
Features. Given a pair of detections z; = (x;,y;,w;, h;) and z; = (x;,y;,wj,h;j), where x, y
w, h indicate bounding box’s central coordinate and its width and height, the pairwise geo-

. . 2xj—x;) 20y
metric feature is computed as: f;; = ( (hx_,thx)’ El =y i) ,log h’ ,log X o 7IOU) These pairwise

features serve as the input to gg(-) for regressing the score matrix S. The network gg(-)
is implemented as two-layer MLP with ReLU non-linearity and is trained end-to-end using
stochastic gradient descent. We provide further implementation and training details in the
supplementary material.

3.2 Inference

For testing, we utilize Tracktor [2] to preprocess the provided raw detections as suggested
in[1, 11, 21]. We use the learned network to associate detections with predicted objects using
a Kalman filter. Following [37], we define state x = (x,y,w,h,X,y,W, h) to denote bounding
box central coordinates and its corresponding velocities. More details regarding the process
and observation noise of the Kalman Filter are provided in the supplementary material.
Combining Motion and Appearance Cues. We use the learned gg and ¢y to associate
detections with the predicted objects. Suppose at frame ¢, we have N bounding boxes Z;
predicted by the motion model along with M detections z;, the cost matrix C € RV*M is then
used for association:

i 0o (2;)" do(z;)
Cij* [7 z; — Smin | » (11)
~eo(f) - K<||¢9(Zt)|2|¢0(12)||2 )

where spin is the minimum cosine similarity threshold for two detections belonging to the
same track and  is the scaling factor for the cosine similarity between two detections.
Detection Noise Handling. In practice, a predicted box at frame ¢ might not be matched to
any detection due to occlusion or a missing detection. Vice versa, a detection at frame ¢ may
not be matched to any of the predicted boxes as it could be a false positive or start of a new
track. To handle this, we propose to augment C with an auxiliary row and column containing
a learned cost cpss for a missing association, such that C € RN+D*(M+1) " We then obtain
the optimal data association A* by solving

N+1M+1 M+1 N+1

A* =argmin Y Zc,la,, s.t. Za,lflwe{l -, N+1}, Za,]71V16{1 M+1} (12)
AcA =] J i=1
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Association HOTA 1 MOTA 1 IDF1 1 IDSW |
mot 62.0 64.0 69.9 731
mot + app 62.4 64.1 70.5 652

Table 1: Results on the MOT17 training set using public detections.
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Figure 3: Ablation studies on MOT17 training set.

using the Hungarian algorithm [17]. In this way, tracks that are unmatched will only be
updated by the motion model and detections that are unmatched to predictions initialize
a new track if the detection confidence is high enough, so that our approach can deal with
newly entering objects. Tracks that remain unmatched for more than 7 frames are terminated.

4 Experiments

4.1 Datasets

Our experiments are conducted on the MOT17/20 and BDD100K [35] datasets. MOT17
contains 7 videos for training and 7 for testing. For all videos, detections from DPM [§],
FRCNN [29] and SDP [33] are provided, resulting in 21 videos in total for training and
testing. For MOT?20, 4 videos are provided for training and testing under crowded scenarios.
We report CLEAR [3] metrics such as MOTA and number of identity switches IDSW), IDF1
and the HOTA metric [22]. BDD100K [35] is a large-scale autonomous driving dataset that
has 1400 and 200 videos in the training and validation set, respectively. The videos contain
fast camera ego-motion and frequent occlusions. 8 classes including cars and pedestrians are
included. mHOTA and mIDF1 are averaged across all classes, whereas IDF1 and IDSW are
summed over all classes.

4.2 Ablation Study

Impact of Appearance Cost. To show the effectiveness of fine-tuning the appearance
model, we conduct experiments on the MOT17 training set. As can be seen in Table I,
adding appearance cost can further boost the model’s tracking performance on all metrics.
In particular, it reduces the number of identity switches IDSW) by 11%.

Impact of 7. We study how the tracking performance is affected by the number of frames
used for re-identification after occlusion. From Fig. 3(a), we observe a consistent gain among
tracking metrics by increasing 7. By default, we use 7 = 60.

Impact of Amount of Unlabeled Data. We study how the tracking performance varies
when training with different amount of unlabeled videos. We vary the training corpus by
using 100%, 67%, 33%, and 15% of MOT17 and report the results on the training set with
public detections. Results are shown in Fig. 3(b). While the difference in HOTA, MOTA, and
IDF1 metrics is small, we observe that IDSW decreases with more training data, indicating
the improved association with more unlabeled training videos.

Impact of Number of Sinkhorn Iterations. Our method is not sensitive to the number of
Sinkhorn iterations as long as it exceeds 5. We used 20 iterations in our experiments.
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Method Sup. HOTA 1 MOTA IDFI t IDSW |
MHT_BiLSTM [15] v 41.0 475 51.9 2069
Tracktor++ [2] v 44.8 56.3 55.1 1987
TrackFormer [23] v - 57.6 62.3 4018
SUSHI [6] v 54.6 62.0 715 1041
SORT [4] X - 43.1 39.8 4852
UNS20regress [1] X 464 56.8 58.3 1320
UnsupTrack [13] X 46.9 61.7 58.1 1864
Luetal. [21] X 49.0 58.8 61.2 1219
Ours X 50.3 60.3 63.4 1266

Table 2: Benchmark results on MOT17 test set using public detections, v indicates fully-
supervised and Xmeans self-supervised methods. The best and second best self-supervised
performances are shown in bold and underlined numbers, respectively

Method Sup. HOTA 1 MOTA 1 IDF1 1 IDSW |
Tracktor++V2 [2] v 4.1 52.6 52.7 1648
ArTist [30] v - 53.6 51.0 1531
ApLift [12] v 46.6 58.9 56.5 2241
SUSHI [6] v 554 61.6 71.6 1053
SORT20 [4] X 36.1 0.7 45.1 4470
Ho et al. [10] X - 41.8 - 5918
UnsupTrack [13] X 41.7 53.6 50.6 2178
Ours X 47.4 59.5 58.5 1656

Table 3: Benchmark results on MOT20 test set using public detections, v indicates fully-
supervised and Xmeans self-supervised methods. The best and second best self-supervised
performances are shown in bold and underlined numbers, respectively

Method Sup. mHOTA 1 mIDF1 4 IDF1 t IDSW |
MOTR et al. [36] v 435 - -

Yu et al. [35] v . 445 66.8 8315
QDTrack [27] v 41.7 50.8 71.5 6262
ByteTrack [37] v 54.8 70.4 9140

SORT [4] X 27.9 338 56.4 9647
Ours X 345 22 62.3 23143

Table 4: Benchmark results on BDD100K [35] validation set. The best self-supervised per-
formances are shown in bold numbers. We use the same detections as in [37].

4.3 Comparison with State of the Art

MOT17. We compare our method with several other approaches in Table 2. SORT [4] relies
on heuristic IoU matching with a Kalman filter. UnsupTrack [13] uses SORT to generate
pseudo labels for learning an appearance model. UNS20regress [1] utilizes motion and ap-
pearance consistency trained with an RNN for association. Lu et al. [21] impose a heuristic
path consistency constraint with several loss terms to train a matching network. Our method
uses exactly the same input detections with [1, 21] preprocessed with Tracktor, and out-
performs their approaches in terms of HOTA and IDF1. UnsupTrack [13] achieves better
MOTA, but it uses a better detector, i.e. CenterNet, to improve public detections.

It is worth noting that our method performs even better than several fully-supervised
approaches like MHT_BiLSTM [15], TrackFormer [23]. Tracking results using private de-
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Figure 4: Qualitative results of our tracking method on the MOT17/20 and BDD100K
dataset. Our method is able to track objects of different classes under occlusions, camera
ego-motion and crowded scenarios. Best viewed in color.

tections are provided in the supplementary material.

MOT20. Table 3 shows our results. Our method outperforms the strongest self-supervised
baseline UnsupTrack [13] in all tracking metrics by a large margin.

BDD100K. We train our model on the BDD100K training set and report the tracking results
on the validation set in Table 4, using the same YOLOX detector as in [37]. For complete-
ness, we evaluated SORT [4] as well. Our approach outperforms SORT for all metrics, only
IDSW is lower for SORT. This, however, can be explained by the low recall of SORT (26.0
IDentity Recall). SORT therefore tracks only the simple cases and misses many tracks,
which results in a low IDSW. Our approach has a much higher recall (36.5 IDR), which
comes at the cost of more IDSWs. The results show that our approach also performs well on
large-scale MOT datasets.

Qualitative Results. Figure 4 shows some qualitative results for the MOT17/20 and BDD 100K
test set. Our method can track objects with similar appearances under occlusion, camera mo-
tion and crowded scenarios, despite learning data associations in a self-supervised manner.

5 Conclusion

In this work, we introduced a maximum likelihood learning framework for self-supervised
multi-object tracking. It learns a network for associating detections between adjacent frames
and an appearance model by associating detections to states of a Kalman filter. Our method
does not require expensive identity-level annotations for training, it enables online inference
and achieves state-of-the-art performances on the MOT17 and MOT?20 datasets among ex-
isting self-supervised approaches given public detections. It also achieves promising results
on the large-scale BDD100K dataset.
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