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1 Implementation Details
Preprocessing Detections. During training, we use Faster RCNN [9] detections, and our
training formulation attempts to track K objects in a single clip, where K can vary among
clips. We threshold the detections based on the detection confidence values to remove po-
tential false positives. The number of remaining detections in the first frame of each clip
defines K. To compensate for missing detections, we use the KCF [3] tracker, initialized
independently for each detection at the first frame of the clip. In case of missing detections
at certain frames, we use the bounding box output of KCF. If this results in more than K
detections in the next frame, we discard detections with a low intersection-over-union with
tracked bounding boxes. This preprocessing operation enables us to collect K×T detections
from a single video clip, where T is the clip length. While K can differ for each clip, we
keep T the same for all clips. For the sake of computational efficiency, we generate the video
clips with T = 10 from each training sequence. Overall, we generate 260 videos from the
MOT17 training set to train the association network that is used for tracking on MOT17 and
MOT20, the same preprocessing procedure is used to train matching network on BDD100K.
Training. Our implementation is based on the PyTorch framework. We use the detections’
first frame coordinates to initialize mean µ1 of the first state x1, and the covariance matrix
Σ1 is initialized as a diagonal matrix with variance set to 300. For the motion model F
in the Kalman filter, a constant velocity model is utilized. The process noise σq in the
diagonal covariance matrix Q is set to 150 and the observation noise σr in the diagonal
covariance matrix R is set to 5. This enables the Kalman filter to rely more on the observation
model during training. We have also experimented with updating the parameters of Q during
training but the differences were marginal as long as Q is initialized to a large value. For
each bounding box z, we resize it to 224×224 and feed it into φθ , which is parametrized by
ImageNet pretrained ResNet-50 [2], to obtain the appearance embedding φθ (z), followed by
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smin HOTA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

κ
=

5

0.7 61.2 64.0 68.8 712
0.75 61.9 64.0 70.0 690

0.8 62.2 64.1 70.3 668
0.85 62.4 64.1 70.5 652

0.9 62.5 64.1 70.6 656

smin HOTA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

κ
=

10

0.7 59.9 64.0 66.0 697
0.75 60.8 64.0 67.6 669

0.8 61.8 64.0 69.4 647
0.85 62.3 64.1 70.4 649

0.9 62.3 64.1 70.2 653

Table 1: Tracking performance under different combinations of hyperparameters on the
MOT-17 training set.

HOTA↑/IDF1↑/IDSW↓ HOTA↑/IDF1↑/IDSW↓ HOTA↑/IDF1↑/IDSW↓
σvel =

1
320 σvel =

1
160 σvel =

1
80

σpos =
1

40 62.0/69.9/731 62.0/69.8/725 61.4/69.0/783
σpos =

1
20 62.0/69.9/727 62.0/69.9/731 62.0/69.8/725

σpos =
1

10 61.8/69.7/773 62.0/69.9/727 62.0/69.8/731
σpos =

1
5 61.4/69.2/834 61.8/69.7/773 62.0/69.9/727

Table 2: Impact of different parameters for the Kalman filter on the MOT17 training set with
public detections. The results are reported without appearance model.

L2 normalization. Adam [4] optimizer is used during training. We train gθ (·) with a learning
rate of 5× 10−3 for 10 epochs followed by fine-tuning φθ with a learning rate of 10−4 for
another 3 epochs. Note that we only use the unlabeled detections from the MOT17 training
set to fine-tune φθ .

2 Additional Ablation Studies

We study the influence of the parameters κ and smin (11) for the tracking performance on the
MOT17 training set. The results are shown in Table 1. The results show that our approach is
not very sensitive to the parameters. As default values, we use κ = 5 and smin = 0.85.

3 Effect of Kalman Filter’s hyper-parameters

During inference, we initialize the mean of each track as: µ init = (x,y,w,h,0,0,0,0) where
x,y,w,h denotes the bound-box’s center and width/height. The initial covariance is dependent
on the specific detection, i.e., Σinit = diag((2σposw)2,(2σposh)2,(2σposw)2,(2σposh)2,(10σvelw)2,(10σvelh)2,(10σvelw)2,(10σvelh)2)

where σpos and σvel are the variance for bounding box’s position and velocity, respectively.
For process covariance: Q = diag((σposw)2,(σposh)2,(σposw)2,(σposh)2,(σvelw)2,(σvelh)2,(σvelw)2,(σvelh)2) and for
measurement noise: R = diag((σposw)2,(σposh)2,(σposw)2,(σposh)2).

We study the influence of these hyper-parameters on the performance on the MOT17
training set using public detections. We only use the motion affinity network during tracking.
The results in Table 2 suggest that the tracking performance is not very sensitive to the choice
of process and measurement noise. Therefore, we set σpos =

1
20 and σvel =

1
160 in the final

model during inference. In particular, we use the same noise parameters of the Kalman filter
for MOT17, MOT20 and BDD100K [10].

We also provide inference time of our approach in Table 3. Thanks to our online infer-
ence procedure, our approach is fast and can be used in real-time applications.
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Association MOT17 MOT20
mot 96 12

mot+app 33 6

Table 3: Inference speed (FPS) on different datasets.

Method Sup. HOTA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

MOTR [11] ! 57.8 73.4 68.6 2439
MeMOTR [1] ! 58.8 72.8 71.5 1902
MOTRv2 [13] ! 62.0 78.6 75.0 2619

UCSL [8] % 58.4 73.0 70.4 -
OUTrack [6] % 58.7 73.5 70.2 4122

ByteTrack [12] % 63.1 80.3 77.3 2196
U2MOT [5] % 64.2 79.9 78.2 1506
Lu et al. [7] % 65.0 80.9 79.6 1749

Ours % 62.1 76.7 75.7 1092

Table 4: Benchmark results on MOT17 test set using private detections,!indicates fully-
supervised and%means self-supervised methods. The best and second best self-supervised
performances are shown in bold and underlined numbers, respectively

4 Results on MOT17 using Private Detections
We also compare our approach with other works under the private detection protocol in Ta-
ble 4. We use the same YOLOX detector as [12]. Results show that our tracker achieves
competitive results with the state of the art [5, 7] and even outperforms several transformer-
based methods [1, 11, 13] that require expensive identity-level supervision and have a much
larger number of parameters.
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