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1. Implementation Details

The encoder el and decoder dl in Figure 3 of the pa-
per are both represented as single-layer GRUs with 16 hid-
den units. The decoder has an additional softmax layer to
generate class probabilities. Dlabel is a feed-forward neural
network with a single hidden layer with 32 units, a ReLU
non-linearity, and a single unit sigmoid output. The input to
Dlabel are the predicted output labels of dl, stacked for 25
frames.

The pose encoder ep and decoder dp are represented as
GRUs where ep is a single-layer GRU with 512 hidden
units and where dp is a three-layer GRU with 512 hidden
units and dropout rate 0.3. The encoder output hp is passed
as hidden state to the first decoder layer, while the remain-
ing two layers are initialized with a zero hidden state. The
noise state z is concatenated to all three hidden states before
passing to the decoder. The pose discriminator Dpose is rep-
resented as one hidden layer feed-forward neural network
with 512 hidden units, ReLU non-linearity and a single unit
sigmoid output. The input to Dpose are the predicted out-
put labels of dp stacked for 25 frames. Each pose has di-
mension 54. The implementation of the NDMS metric and
the source code for the approach are available at https:
//github.com/jutanke/human_motion_ndms.

2. Clustering

Figure 1 illustrates the difference between naive k-means
clustering and the proposed clustering. While k-means gen-
erates small clusters, we greedily merge cycles of short clus-
ters into larger clusters as shown in Figure 1. We do so by
first segmenting the single poses using k-means and then
detect cycles in the cluster ids for each sequence. We then
greedily merge the most frequent occurring cycles. We start
with 14 clusters and merge the clusters until we have only 8
clusters left.

The impact of the number of clusters is shown in Fig-
ure 2. The approach is not very sensitive to the number of
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Figure 1: Comparing proposed clustering with naive k-
means clustering on Human3.6M [9] for test actor S5. The
cluster centers are obtained from the training set only.

Figure 2: Impact of different numbers of clusters for human
pose forecasting.

clusters, but the NDMS score decreases when the number
of clusters is too large. In this case, the clusters become too
fine-grained.

In Table 1, we evaluate the frame-wise forecast accuracy
of the intention label. We evaluate on test actor S5 for all
15 actions.

3. Evaluation Score

3.1. NDMS vs. Euclidean Distance/Velocity

For our evaluation score, we propose NDMS since other
measures like L2 distance or L2 velocity distance are in-
sufficient. To show this, we take two sequences, one con-
taining real ground-truth motion from the training set and
one containing a static pose (zero velocity) (see Figure 3).



Action Accuracy
Directions 0.789
Discussion 0.701

Eating 0.574
Greeting 0.429
Phoning 0.771
Posing 0.45

Purchases 0.592
Sitting 0.464

Sitting Down 0.326
Smoking 0.54

Taking Photo 0.157
Walking 1.0

Walking Dog 0.456
Waling Together 0.433

Average 0.528

Table 1: Frame-wise accuracy of label forecasting for 100
frames on all 15 actions on Human3.6M [9] for 8 intention
labels.

Figure 3: Real motion (top row) vs. zero velocity (bottom
row) of around two seconds. Zero velocity is very unrealis-
tic as it always produces the same pose as output [13].

We use the scores to measure the plausibility of a walking
motion using the walking sequences of the test data as refer-
ence. While the real motion should have a high score or low
distance, the zero velocity sequence should perform poorly
since it is not a walking motion.

Our results are summarized in Figure 4. We observe that
NDMS (a) scores the real motion high and the zero velocity
very low, as it should be the case. Note that for the distances
in (b) and (c) lower values are better, while for (a) higher
values are better. For the Euclidean distance (b) and the
mean squared error over velocity (c), the zero velocity per-
forms better than the real motion. This shows that neither
the L2 distance nor the mean squared error over velocity are
useful metrics to measure the plausibility of a sequence.

3.2. NDMS vs. NPSS

The Pearson correlation coefficient with the user study
and NDMS is 0.901. This shows that the proposed measure
highly correlates with human perception. The correlation
coefficient for NPSS [3] is −0.238. The negative correla-
tion is due to the competitive NPSS of Grammar [14] al-
though the generated motions are perceived as unrealistic
by humans.

Figure 4: Comparing baseline distances with NDMS: a.),
b.) and c.) show real motion (blue) and zero velocity pre-
diction (orange) for NDMS (higher is better), L2 distance
(lower is better) and L2 velocity distance (lower is better),
respectively. While NDMS scores the real motion higher,
the L2 and L2 velocity distance would rate the static pose
as more plausible than the real motion.

Figure 5: DLow [19] generates a motion discontinuity be-
tween the observed poses (blue-red skeletons) and forecast
poses (green-yellow skeletons). For each frame, we show
the current pose and the previous pose, with the current
pose in darker shades and the previous one in lighter shades.
At the pink box, the method transitions from the observed
poses to forecast poses. We observe that the first predicted
pose is very similar but not identical to the last input pose,
which is a common motion artifact in human motion antic-
ipation [13]. The motion of the left leg is still too small in
the following frame.

3.3. NDMS vs. ADE, FDE, MMADE and MMFDE

DLow [19] proposes ADE, FDE, MMADE and MMFDE
to evaluate the quality of multi-modal human motion pre-



Method APD ↑ ADE ↓ FDE ↓ . MMADE ↓ MMFDE ↓ NDMS ↑
[15] 6.723 0.461 0.560 0.522 0.569 -
[17] 0.403 0.457 0.595 0.716 0.883 -
[4] 7.214 0.858 0.867 0.847 0.858 -
[5] 6.265 0.448 0.533 0.514 0.544 -
[6] 6.769 0.461 0.555 0.524 0.566 -
[8] 6.509 0.483 0.534 0.520 0.545 -

[18] 9.330 0.493 0.592 0.550 0.599 0.294
[19] 11.741 0.425 0.518 0.495 0.531 0.311
Ours 3.477 0.413 0.631 0.662 0.770 0.366

Baseline 16.418 0.429 0.451 0.520 0.478 0.166

Table 2: Evaluation over 2 seconds for multi-modal human motion anticipation on Human3.6M [9] as defined in DLow [19].
The motion is represented as 3D skeletons centered at the origin but with global rotation.

walking eating smoking discussion
milliseconds: 80 160 320 400 560 80 160 320 400 560 80 160 320 400 560 80 160 320 400 560

Zero Velocity [13] 0.39 0.86 0.99 1.15 1.35 0.27 0.48 0.73 0.86 1.04 0.26 0.48 0.97 0.95 1.02 0.31 0.67 0.94 1.04 1.41
Seq2Seq [13] 0.28 0.49 0.72 0.81 0.93 0.23 0.39 0.62 0.76 0.95 0.33 0.61 1.05 1.15 1.25 0.31 0.68 1.01 1.09 1.43

AGED [7] 0.22 0.36 0.55 0.67 0.78 0.17 0.28 0.51 0.64 0.86 0.27 0.43 0.82 0.84 1.06 0.27 0.56 0.76 0.83 1.25
Imitation [16] 0.21 0.34 0.53 0.59 0.67 0.17 0.30 0.52 0.65 0.79 0.23 0.44 0.86 0.85 0.95 0.27 0.56 0.82 0.91 1.34

ConvSeq2Seq [10] 0.33 0.54 0.68 0.73 - 0.22 0.36 0.58 0.71 - 0.26 0.49 0.96 0.92 - 0.32 0.67 0.94 1.01 -
Trajectory [12] 0.18 0.31 0.49 0.56 0.65 0.16 0.29 0.50 0.62 0.76 0.22 0.41 0.86 0.80 0.87 0.20 0.51 0.77 0.85 1.33
Grammar [14] 0.26 0.44 0.67 0.77 0.84 0.20 0.34 0.54 0.68 0.85 0.27 0.50 0.92 0.90 1.00 0.30 0.65 0.92 1.00 1.37

Mix&Match [3] 0.33 0.48 0.56 0.58 0.64 0.23 0.34 0.41 0.50 0.61 0.23 0.42 0.79 0.77 0.82 0.25 0.60 0.83 0.89 1.12
DLow [19]∗ 0.31 0.42 0.53 0.75 0.83 0.24 0.32 0.44 0.55 0.77 0.21 0.43 0.80 0.79 0.97 0.31 0.55 0.80 0.88 1.15

Ours 0.23 0.42 0.73 0.83 0.89 0.17 0.33 0.66 0.85 1.02 0.29 0.50 0.72 0.78 0.83 0.27 0.47 0.82 1.07 1.31

Table 3: Mean Angular Error on Human3.6M [9]. ∗from [2]

Figure 6: Frame-wise velocity of the left foot for
DLow [19], our method and the ground-truth sequence for a
walking sequence. The gray dotted vertical line represents
the transition from input sequence to forecast sequence. Re-
sults for our method as well as for DLow are averaged over
50 samples. Our method clearly follows the ground-truth
motion while DLow suffers from the discontinuity.

diction. In contrast to other state-of-the-art methods they
utilize 3D skeletons rather than an angular representation.
We train and evaluate our method using the data and evalu-
ation code from [19]. The results in Table 2 show that DLow
has a higher diversity while our approach has a lower ADE.
For the other metrics FDE, MMADE, and MMFDE, DLow
performs better. This contradicts the results from the user
study where in particular walking sequences generated from

DLow are considered as unrealistic. This is due to the mo-
tion discontinuity between the observed poses and the fore-
cast poses as shown in Figure 5 and 6, but also due to the
very high diversity of the generated sequences. The fore-
cast sequences quickly generate motions that are very un-
likely to occur after a walking motion. While these issues
are not measured by ADE, FDE, MMADE and MMFDE,
NDMS penalizes motion discontinuities. In Figure 7, we
plot NDMS over time. As can be seen, NDMS drops for
DLow very quickly and increases after 8 frames. This is
due to the discontinuity between observed frames and fore-
cast frames.

In order to show that the measures ADE, FDE, MMADE
and MMFDE can be easily fooled, we construct a very
unrealistic multi-modal baseline. In order to generate 50
samples for a single observation, we generate 50 sequences
with static poses (zero velocity) as shown in Figure 3. To
this end, we cluster the poses of the training data to ob-
tain 48 clusters. For each cluster, we take the mean pose as
static pose. Note that these 48 sequences are independent
of the observation, but they generate a very high diversity
(APD). For the remaining two sequences, we take the last
pose of the observation and the mean pose of the observed
sequence, respectively, as static pose. As shown in Table
2, this baseline performs very well for APD, ADE, FDE,
MMADE and MMFDE although none of the 50 sequences
contains any motion and all of them are highly unrealistic.



Basketball Basketball Signal Directing Traffic Jumping
milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Seq2Seq [13] 0.50 0.80 1.27 1.45 1.78 0.41 0.76 1.32 1.54 2.15 0.33 0.59 0.93 1.10 2.05 0.56 0.88 1.77 2.02 2.4

convSeq2Seq [10] 0.37 0.62 1.07 1.18 1.95 0.32 0.59 1.04 1.24 1.96 0.25 0.56 0.89 1.00 2.04 0.39 0.6 1.36 1.56 2.01
Trajectory [12] 0.33 0.52 0.89 1.06 1.71 0.11 0.20 0.41 0.53 1.00 0.15 0.32 0.52 0.60 2.00 0.31 0.49 1.23 1.39 1.80

Ours 0.41 0.66 1.15 1.38 2.05 0.30 0.56 0.97 1.12 1.56 0.27 0.48 0.78 0.91 1.50 0.84 0.87 1.43 1.65 2.04
Soccer Walking Washwindow Average

milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Seq2Seq [13] 0.29 0.51 0.88 0.99 1.72 0.35 0.47 0.60 0.65 0.88 0.30 0.46 0.72 0.91 1.36 0.38 0.62 1.02 1.18 1.67

convSeq2Seq [10] 0.26 0.44 0.75 0.87 1.56 0.35 0.44 0.45 0.50 0.78 0.30 0.47 0.80 1.01 1.39 0.32 0.52 0.86 0.99 1.55
Trajectory [12] 0.18 0.29 0.61 0.71 1.40 0.33 0.45 0.49 0.53 0.61 0.22 0.33 0.57 0.75 1.20 0.25 0.39 0.68 0.79 1.33

Ours 0.25 0.42 0.60 0.79 1.06 0.26 0.41 0.49 0.53 0.71 0.21 0.33 0.61 0.74 1.18 0.35 0.52 0.83 0.96 1.33

Table 4: Mean Angular Error on CMU Mocap [1].

Figure 7: NDMS score for 50 samples per input sequence
on Human3.6M [9] averaged over 15 actions. The first few
frames exhibit very high scores as the motion words con-
tain mostly poses from the observed sequence at the begin-
ning, as described in Section 4 of our paper. We observe
that DLow has a much sharper decline and a small dent due
to the motion discontinuity between observed and forecast
frames.

In contrast, the low NDMS score reliably indicates that the
baseline does not generate plausible sequences.

3.4. NDMS vs. Inception Score

For evaluating long-term human motion forecasting we
report the inception score (IS) as described in [3]. Since
the original scoring model is not available, we followed the
description [3] and re-trained a skeleton-based action clas-
sifier [11]. We pass then sequences with 16 observation
frames and 60 prediction frames to the scoring model. For
methods that forecast multiple sequences for one observa-
tion sequence, we generate 50 samples for each single input
sequence and calculate the mean inception score as well as
the standard deviation, following [3]. For the other meth-
ods, we compute the inception score of a single forecast
sequence.

The results can be seen in Table 5. First, we validate
that our newly trained inception network works properly
by comparing our results of [3] with the results reported
in their work. The reproduced result is even slightly bet-
ter. While our approach outperforms all methods that gen-
erate multiple future sequences [17, 15, 4, 3], we observe

Method IS
Seq2Seq [13] 7.5± 0

Trajectory [12] 9.2± 0
Grammar [14] 10.3± 0

Yan et al. [17] ? 1.9± 0.4
Walker et al. [15] ? 1.8± 0.6
Barsoum et al. [4] ? 2.1± 1.3
Mix&Match [3] ? 7.3± 1.4
Mix&Match [3] 7.5± 1.1

Ours 9.7± 0.6

Table 5: Inception score as described in [3] for Hu-
man3.6M. ? denotes results reported in [3].

that Grammar [14] achieves a higher inception score. How-
ever, our user study shows that poses generated by Gram-
mar are less realistic than the sequences that are generated
by Mix&Match [3] or our approach. This indicates that the
inception score is not a very reliable measure for the plausi-
bility of the forecast human motion. The generative gram-
mars [14] achieve a very high inception score, as can be
seen in Table 5. The high score, however, is not supported
by our user study and the qualitative results. This shows the
weakness of the inception score, which does not occur for
the proposed NDMS score.

4. Short-Term Forecasting
To evaluate short-term motion prediction, we follow the

same protocol as described in [3]. Table 3 and Table 4 detail
our short-term forecasting results on Human3.6M [9] and
on CMU Mocap [1], respectively. Even though our main
objective is long-term and not short-term human motion an-
ticipation, our approach achieves competitive results.
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