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Figure 1: Sample video from our benchmark. We select sequences that represent crowded scenes with multiple articulated
people engaging in various dynamic activities and provide dense annotations of person tracks, body joints and ignore regions.

Abstract

Existing systems for video-based pose estimation and
tracking struggle to perform well on realistic videos with
multiple people and often fail to output body-pose trajec-
tories consistent over time. To address this shortcoming
this paper introduces PoseTrack which is a new large-scale
benchmark for video-based human pose estimation and ar-
ticulated tracking. Our new benchmark encompasses three
tasks focusing on i) single-frame multi-person pose esti-
mation, ii) multi-person pose estimation in videos, and iii)
multi-person articulated tracking. To establish the bench-
mark, we collect, annotate and release a new dataset that
features videos with multiple people labeled with person
tracks and articulated pose. A public centralized evalu-
ation server is provided to allow the research community
to evaluate on a held-out test set. Furthermore, we con-
duct an extensive experimental study on recent approaches
to articulated pose tracking and provide analysis of the
strengths and weaknesses of the state of the art. We envision
that the proposed benchmark will stimulate productive re-
search both by providing a large and representative training
dataset as well as providing a platform to objectively eval-
uate and compare the proposed methods. The benchmark is
freely accessible at https://posetrack.net/.

∗This work was done prior to joining Amazon.
∗∗This work was done prior to joining Google.

1. Introduction

Human pose estimation has recently made significant
progress on the tasks of single person pose estimation in
individual frames [46, 45, 44, 4, 49, 15, 18, 31, 2, 36] and
videos [34, 6, 21, 12] as well as multi-person pose estima-
tion in monocular images [35, 18, 20, 3, 32]. This progress
has been facilitated by the use of deep learning-based ar-
chitectures [41, 14] and by the availability of large-scale
benchmark datasets such as “MPII Human Pose” [1] and
“MS COCO” [28]. Importantly, these benchmark datasets
not only have provided extensive training sets required for
training of deep learning based approaches, but also estab-
lished detailed metrics for direct and fair performance com-
parison across numerous competing approaches.

Despite significant progress of single frame based multi-
person pose estimation, the problem of articulated multi-
person body joint tracking in monocular video remains
largely unaddressed. Although there exist training sets for
special scenarios, such as sports [51, 23] and upright frontal
people [6], these benchmarks focus on single isolated in-
dividuals and are still limited in their scope and variability
of represented activities and body motions. In this work,
we aim to fill this gap by establishing a new large-scale,
high-quality benchmark for video-based multi-person pose
estimation and articulated tracking.

Our benchmark is organized around three related tasks
focusing on single-frame multi-person pose estimation,
multi-person pose estimation in video, and multi-person ar-
ticulated tracking. While the main focus of the dataset is
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Figure 2: Example frames and annotations from our dataset.

on multi-person articulated tracking, progress in the single-
frame setting will inevitably improve overall tracking qual-
ity. We thus make the single frame multi-person setting part
of our evaluation procedure. In order to enable timely and
scalable evaluation on the held-out test set, we provide a
centralized evaluation server. We strongly believe that the
proposed benchmark will prove highly useful to drive the
research forward by focusing on remaining limitations of
the state of the art.

To sample the initial interest of the computer vision com-
munity and to obtain early feedback we have organized
a competition based on our benchmark at one of the re-
cent computer vision meetings. We obtained largely pos-
itive feedback from the twelve teams that participated in the
competition. We incorporate some of this feedback into this
paper. In addition we analyze the currently best performing
approaches and highlight the common difficulties for pose
estimation and articulated tracking.

2. Related Datasets

The commonly used publicly available datasets for eval-
uation of 2D human pose estimation are summarized in
Tab. 1. The table is split into blocks of single-person single-
frame, single-person video, multi-person single-frame, and
multi-person video data.

The most popular benchmarks to date for evaluation of
single person pose estimation are “LSP” [25] (+ “LSP Ex-
tended” [26]) and “MPII Human Pose (Single Person)” [1].
LSP and LSP Extended datasets focus on sports scenes fea-
turing a few sport types. Although a combination of both
datasets results in 11,000 training poses, the evaluation set
of 1000 is rather small. FLIC [38] targets a simpler task
of upper body pose estimation of frontal upright individuals
in feature movies. In contrast to LSP and FLIC datasets,
MPII Single-Person benchmark covers a much wider vari-
ety of everyday human activities including various recre-
ational, occupational and household activities and consists
of over 26,000 annotated poses with 7000 poses held out for

Dataset # Poses Multi- Video-labeled Data type
person poses

LSP [25] 2,000 sports (8 act.)
LSP Extended [26] 10,000 sports (11 act.)
MPII Single Person [1] 26,429 diverse (491 act.)
FLIC [38] 5,003 feature movies
FashionPose [9] 7,305 fashion blogs

We are family [10] 3,131 X group photos
MPII Multi-Person [1] 14,993 X diverse (491 act.)
MS COCO Keypoints [28] 105,698 X diverse

Penn Action [51] 159,633 X sports (15 act.)
JHMDB [23] 31,838 X diverse (21 act.)
YouTube Pose [6] 5,000 X diverse
Video Pose 2.0 [39] 1,286 X TV series

Multi-Person PoseTrack [22] 16,219 X X diverse
Proposed 153,615 X X diverse

Table 1: Overview of publicly available datasets for artic-
ulated human pose estimation in single frames and video.
For each dataset we report the number of annotated poses,
availability of video pose labels and multiple annotated per-
sons per frame, as well as types of data.

evaluation. Both benchmarks focus on single person pose
estimation and provide rough location scale of a person in
question. In contrast, our dataset addresses a much more
challenging task of body tracking of multiple highly artic-
ulated individuals where neither the number of people, nor
their locations or scales are known.

The single-frame multi-person pose estimation setting
was introduced in [10] along with “We Are Family (WAF)”
dataset. While this benchmark is an important step towards
more challenging multi-person scenarios, it focuses on a
simplified setting of upper body pose estimation of mul-
tiple upright individuals in group photo collections. The
“MPII Human Pose (Multi-Person)” dataset [1] has signif-
icantly advanced the multi-person pose estimation task in
terms of diversity and difficulty of multi-person scenes that
show highly-articulated people involved in hundreds of ev-
ery day activities. More recently, MS COCO Keypoints
Challenge [28] has been introduced to provide a new large-
scale benchmark for single frame based multi-person pose
estimation. All these datasets are only limited to single-
frame based body pose estimation. In contrast, our dataset
also focuses on a more challenging task of multi-person
pose estimation in video sequences containing highly artic-
ulated people in dense crowds. This not only requires an-
notations of body keypoints, but also a unique identity for
every person appearing in the video. Our dataset is based
on the MPII Multi-Person benchmark, from which we se-
lect a subset of key frames and for each key frame include
about five seconds of video footage centered on the key
frame. We provide dense annotations of video sequences
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with person tracking and body pose annotations. Further-
more, we adapt a completely unconstrained evaluation setup
where the scale and location of the persons is completely
unknown. This is in contrast to MPII dataset that is re-
stricted to evaluation on group crops and provides rough
group location and scale. Additionally, we provide ignore
regions to identify the regions containing very large crowds
of people that are unreasonably complex to annotate.

Recently, [22] and [17] also provided datasets for multi-
person pose estimation in videos. However, both are at a
very small scale. [22] provides only 60 videos with most
sequences containing only 41 frames, and [17] provides 30
videos containing only 20 frames each. While these datasets
make a first step toward solving the problem at hand, they
are certainly not enough to cover a large range of real-world
scenarios and to learn stronger pose estimation models. We
on the other hand establish a large-scale benchmark with
a much broader variety and an open evaluation setup. The
proposed dataset contains over 150,000 annotated poses and
over 22,000 labeled frames.

Our dataset is complementary to recent video datasets,
such as J-HMDB [23], Penn Action [51] and YouTube
Pose [6]. Similar to these datasets, we provide dense an-
notations of video sequences. However, in contrast to
[23, 51, 6] that focus on single isolated individuals we tar-
get a much more challenging task of multiple people in dy-
namic crowded scenarios. In contrast to YouTube Pose that
focus on frontal upright people, our dataset includes a wide
variety of body poses and motions, and captures people at
different scales from a wide range of viewpoints. In contrast
to sports-focused Penn Action and J-HMDB that focuses on
a few simple actions, the proposed dataset captures a wide
variety of everyday human activities while being at least 3x
larger compared to J-HMDB.

Our dataset also addresses a different set of challenges
compared to the datasets such as “HumanEva” [40] and
“Human3.6M” [19] that include images and 3D poses of
people but are captured in controlled indoor environments,
whereas our dataset includes real-world video sequences
but provides 2D poses only.

3. The PoseTrack Dataset and Challenge
We will now provide the details on data collection and

the annotation process, as well as the established evaluation
procedure. We build on and extend the newly introduced
datasets for pose tracking in the wild [17, 22]. To that end,
we use the raw videos provided by the popular MPII Human
Pose dataset. For each frame in MPII Human Pose dataset
we include 41 − 298 neighboring frames from the corre-
sponding raw videos, and then select sequences that rep-
resent crowded scenes with multiple articulated people en-
gaging in various dynamic activities. The video sequences
are chosen such that they contain a large amount of body

motion and body pose and appearance variations. They also
contain severe body part occlusion and truncation, i.e., due
to occlusions with other people or objects, persons often
disappear partially or completely and re-appear again. The
scale of the persons also varies across the video due to the
movement of persons and/or camera zooming. Therefore,
the number of visible persons and body parts also varies
across the video.

3.1. Data Annotation

We annotated the selected video sequences with person
locations, identities, body pose and ignore regions. The an-
notations were performed in four steps. First, we labeled
ignore regions to exclude crowds and people for which pose
can not be reliably determined due to poor visibility. After-
wards, the head bounding boxes for each person across the
videos were annotated and a track ID was assigned to each
person. The head bounding boxes provide an estimate of the
absolute scale of the person required for evaluation. We as-
sign a unique track ID to each person appearing in the video
until the person moves out of the camera field-of-view. Note
that each video in our dataset might contain several shots.
We do not maintain track ID between shots and same per-
son might get different track ID if it reappears in another
shot. Poses for each person track are then annotated in the
entire video. We annotate 15 body parts for each body pose
including head, nose, neck, shoulders, elbows, wrists, hips,
knees and ankles. All pose annotations were performed us-
ing the VATIC tool [48] that allows to speed-up annotation
by interpolating between frames. We chose to skip anno-
tation of the body joints that can not be reliably localized
by the annotator due to strong occlusion or difficult imag-
ing conditions. This has proven the be a faster alternative to
requiring annotators to guess the location of the joint and/or
marking it as occluded.

Fig. 2 shows example frames from the dataset. Note the
variability in appearance and scale, and complexity due to
substantial number of people in close proximity.

Overall, the dataset contains 550 video sequences with
66,374 frames. We split them into 292, 50, 208 videos
for training, validation and testing, respectively. The split
follows the original split of the MPII Human Pose dataset
makeing it possible to train a model on the MPII Human
Pose and evaluate on our test and validation sets.

The length of the majority of the sequences in our dataset
ranges between 41 and 151 frames. The sequences corre-
spond to about 5 seconds of video. Differences in the se-
quence length are due to variation in the frame rate of the
videos. A few sequences in our dataset are longer than five
seconds with the longest sequence having 298 frames. For
each sequence in our benchmark we annotate the 30 frames
in the middle of the sequence. In addition, we densely anno-
tate validation and test sequences with a step of four frames.
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Figure 3: Various statistics of the PoseTrack benchmark.

The rationale behind this annotation strategy is that we aim
to evaluate both smoothness of body joint tracks as well as
ability to track body joints over longer number of frames.
We did not densely annotate the training set to save the an-
notation resources for the annoation of test and validation
set. In total, we provide around 23,000 labeled frames with
153,615 pose annotations. To the best of our knowledge
this makes PoseTrack the largest multi-person pose estima-
tion and tracking dataset released to date. In Fig. 3 we
show additional statistics of the validation and test sets of
our dataset. The plots illustrate the distribution of ‘crowd-
ness’ per frame and per video, the track length and people
size measured by the head bounding box. Note that sub-
stantial portion of the videos has a large number of people
as shown in the plot on the top-right. The abrupt fall off in
the plot of the track length in the bottom-left is due to fixed
length of the sequences included in the dataset.

3.2. Challenges

The benchmark consists of the following challenges:
Single-frame pose estimation. This task is similar to the
ones covered by existing datasets like MPII Pose and MS
COCO Keypoints, but on our new large-scale dataset.
Pose estimation in videos. The evaluation of this challenge
is performed on single frames, however, the data will also
include video frames before and after the annotated ones,
allowing methods to exploit video information for a more
robust single-frame pose estimation.
Pose tracking. This task requires to provide temporally
consistent poses for all people visible in the videos. Our
evaluation include both individual pose accuracy as well as
temporal consistency measured by identity switches.

3.3. Evaluation Server

We provide an online evaluation server to quantify the
performance of different methods on the held-out test set.
This will not only prevent over-fitting to the test data but
also ensures that all methods are evaluated in the exact same
way, using the same ground truth and evaluation scripts,
making the quantitative comparison meaningful. Addition-
ally, it can also serve as a central directory of all available
results and methods.

3.4. Experimental Setup and Evaluation Metrics

Since we need to evaluate both the accuracy of multi-
person pose estimation in individual frames and articulated
tracking in videos, we follow the best practices followed
in both multi-person pose estimation [35] and multi-target
tracking [30]. In order to evaluate whether a body part
is predicted correctly, we use the PCKh (head-normalized
probability of correct keypoint) metric [1], which considers
a body joint to be correctly localized if the predicted loca-
tion of the joint is within a certain threshold from the true
location. Due to the large scale variation of people across
videos and even within a frame, this threshold needs to be
selected adaptively, based on the person’s size. To that end,
we follow [1] and use 50% of the head length where the
head length corresponds to 60% of the diagonal length of
the ground-truth head bounding box. Given the joint local-
ization threshold for each person, we compute two sets of
evaluation metrics, one which is commonly used for eval-
uating multi-person pose estimation [35], and one from the
multi-target tracking literature [50, 8, 30] to evaluate multi-
person pose tracking. During evalution we ignore all person
detections that overlap with the ignore regions.
Multi-person pose estimation. For measuring frame-wise
multi-person pose accuracy, we use mean Average Precision
(mAP) as is done in [35]. The protocol to evaluate multi-
person pose estimation in [35] requires that the location of
a group of persons and their rough scale is known during
evaluation [35]. This information, however, is almost never
available in realistic scenarios, particularly for videos. We
therefore, propose not to use any ground-truth information
during testing and evaluate the predictions without rescaling
or selecting a specific group of people for evaluation.
Articulated multi-person pose tracking. To evaluate
multi-person pose tracking, we use Multiple Object Track-
ing (MOT) metrics [30]. The metrics require predicted body
poses with tracklet IDs. First, for each frame, for each body
joint class, distances between predicted locations and GT
locations are computed. Then, predicted tracklet IDs and
GT tracklet IDs are taken into account and all (prediction,
GT) pairs with distances below the PCKh threshold are con-
sidered during global matching of predicted tracklets to GT
tracklets for each particular body joint. Global matching
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minimizes the total assignment distance. Finally, Multiple
Object Tracker Accuracy (MOTA), Multiple Object Tracker
Precision (MOTP), Precision, and Recall metrics are com-
puted. Evaluation server reports MOTA metric for each
body joint class and average over all body joints, while for
MOTP, Precision, and Recall we report averages only. In
the following experimental evaluation MOTA is used as our
main tracking metric. The source code for evaluation met-
rics is available publicly on the benchmark website.

4. Analysis of the State of the Art
Articulated pose tracking in unconstrained videos is a

relatively new topic in computer vision research. To the
best of our knowledge only few approaches for this task
have been proposed in the literature [17, 22]. Therefore, to
analyze the performance of the state of the art on our new
dataset, we proceed in two ways.

First, we propose two baseline methods based on the
state of the art approaches [17, 22]. Note that our bench-
mark includes an order of magnitude more sequences com-
pared to the datasets used in [17, 22] and the sequences in
our benchmark are about five times longer, which makes
it computationally expensive to run the graph partitioning
on the full sequences as in [17, 22]. We, therefore, mod-
ify these methods to make them applicable on the proposed
dataset. The baselines and corresponding modifications are
explained in Sec. 4.1.

Second, in order to broaden the scope of our evaluation
we organized a PoseTrack Challenge in conjunction with
ICCV’17 on our dataset by establishing an online evalua-
tion server and inviting submissions from the research com-
munity. In the following we consider the top five meth-
ods submitted to the online evaluation server both for the
pose estimation and pose tracking tasks. In Tab. 2 and 3
we list the best performing methods on each task sorted by
MOTA and mAP, respectively. In the following we first de-
scribe our baselines based on [17, 22] and then summarize
the main observations made in this evaluation.

4.1. Baseline Methods

We build the first baseline model following the graph
partitioning formulation for articulated tracking introduced
in [17], but introduce two simplifications that follow [32].
First, we rely on a person detector to establish locations
of people in the image and run pose estimation indepen-
dently for each person detection. This allows us to deal
with large variation in scale present in our dataset by crop-
ping and rescaling images to canonical scale prior to pose
estimation. In addition, this also allows us to group to-
gether the body-part estimates inferred for a given detec-
tion bounding box. As a second simplification we apply
the model on the level of full body poses and not on the
level of individual body parts as in [17, 22]. We use a pub-

licly available Faster-RCNN [37] detector from the Tensor-
Flow Object Detection API [16] for people detection. This
detector has been trained on the “MS COCO” dataset and
uses Inception-ResNet-V2 [42] for image encoding. We
adopt the DeeperCut CNN architecture from [18] as our
pose estimation method. This architecture is based on the
ResNet-101 converted to a fully convolutional network by
removing the global pooling layer and utilizing atrous (or
dilated) convolutions [7] to increase the resolution of the
output scoremaps. Once all poses are extracted, we per-
form non-maximum suppression based on pose similarity
criteria [32] to filter out redundant person detections. We
follow the cropping procedure of [32] with the crop size
336x336px. Tracking is implemented as in [17] by forming
the graph that connects body-part hypotheses in adjacent
frames and partitioning this graph into connected compo-
nents using an approach from [27]. We use Euclidean dis-
tance between body joints to derive costs for graph edges.
Such distance based features were found to be already ef-
fective in [17] with additional features adding minimal im-
provements at the cost of substantially slower inference.

For the second baseline, we use the publicly available
source code of [22] and replace the pose estimation model
with [3]. We emprically found that the pose estimation
model of [3] is better at handling large scale variations as
compared to DeeperCut [18] used in the original paper, in
particular, when performing bottom-up multi-person pose
estimation. We do not make any changes in the graph par-
titioning algorithm, but reduce the window size to 21 as
compared to 31 used in the original model. We refer the
readers to [22] for more details. The goal of constructing
these strong baseline is to validate the results submitted to
our evaluation server and to allow us to perform additional
experiments presented in Sec. 5. In the rest of this paper,
we refer to these baselines as ArtTrack [17] and PoseTrack
[22], respectively.

4.2. Main Observations

Two-stage design. The first observation is that all submis-
sions follow a two-stage tracking-by-detection design. In
the first stage, a combination of person detector and single-
frame pose estimation method is used to estimate poses of
people in each frame. The exact implementation of single-
frame pose estimation method varies. Each of the top three
articulated tracking methods builds on a different pose es-
timation approach (Mask-RCNN [13], PAF [3] and Deep-
erCut [18]). On the other hand, when evaluating methods
according to pose estimation metric (see Tab. 3) three of
the top four approaches build on PAF [3]. The performance
still varies considerably among these PAF-based methods
(70.3 for submission ML-LAB [52] vs. 62.5 for submission
SOPT-PT [43]) indicating that large gains can be achieved
within the PAF framework by introducing incremental im-
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Submission Pose model Tracking model Tracking granularity Additional training data mAP MOTA

ProTracker [11] Mask R-CNN [13] Hungarian pose-level COCO 59.6 51.8
BUTD [24] PAF [3] graph partitioning person-level and part-level COCO 59.2 50.6
SOPT-PT [43] PAF [3] Hungarian pose-level MPII-Pose + COCO 62.5 44.6
ML-LAB [52] modification of PAF [3] frame-to-frame assign. pose-level MPII-Pose + COCO 70.3 41.8
ICG [33] novel single-/multi-person CNN frame-to-frame assign. pose-level - 51.2 32.0

ArtTrack-baseline Faster-RCNN [16] + DeeperCut [18] graph partitioning pose-level MPII-Pose + COCO 59.4 48.1
PoseTrack-baseline PAF [3] graph partitioning part-level COCO 59.4 48.4

Table 2: Results of the top five pose tracking models submitted to our evaluation server and of our baselines based on [17]
and [22]. Note that mAP for some of the methods might be intentionally reduced to achieve higher MOTA (see discussion in
text).

Submission Pose model Additional training data mAP

ML-LAB [52] modification of PAF [3] COCO 70.3
BUTDS [24] PAF [3] MPII-Pose + COCO 64.5
ProTracker [11] Mask R-CNN [13] COCO 64.1
SOPT-PT [43] PAF [3] MPII-Pose + COCO 62.5
SSDHG SSD [29] + Hourglass [31] MPII-Pose + COCO 60.0

ArtTrack-baseline DeeperCut MPII-Pose + COCO 65.1
PoseTrack-baseline PAF [3] COCO 59.4

Table 3: Results of the top five pose estimation models sub-
mitted to our evaluation server and of our baselines. The
methods are ordered according to mAP. Note that the mAP
of ArtTrack and submission ProTracker [11] is different
from Tab. 2 because the evaluation in this table does not
threshold detections by the score.

Model Training Set Head Sho Elb Wri Hip Knee Ank mAP

ArtTrack-baseline our dataset 73.1 65.8 55.6 47.2 52.6 50.1 44.1 55.5
ArtTrack-baseline MPII 76.4 74.4 68.0 59.4 66.1 64.2 56.6 66.4
ArtTrack-baseline MPII + our dataset 78.7 76.2 70.4 62.3 68.1 66.7 58.4 68.7

Table 4: Pose estimation performance (mAP) of our Art-
Track baseline for different training sets.

provements.
In the second stage the single-frame pose estimates are

linked over time. For most of the methods the assignment is
performed on the level of body poses, not individual parts.
This is indicated in the “Tracking granularity” column in
Tab. 2. Only submission BUTD [24] and our PoseTrack
baseline track people on the level of individual body parts.

Model Head Sho Elb Wri Hip Knee Ank Total mAP

ArtTrack-baseline, τ = 0.1 58.0 56.4 34.0 19.2 44.1 35.9 19.0 38.1 68.6
ArtTrack-baseline, τ = 0.5 63.5 62.8 48.0 37.8 52.9 48.7 36.6 50.0 66.7
ArtTrack-baseline, τ = 0.8 66.2 64.2 53.2 43.7 53.0 51.6 41.7 53.4 62.1

Table 5: Pose tracking performance (MOTA) of ArtTrack
baseline for different part detection cut-off thresholds τ .

Hence, most methods establish correspondence/assembly
of parts into body poses on the per-frame level. In prac-
tice, this is implemented by supplying a bounding box of a
person and running pose estimation just for this box, then
declaring maxima of the heatmaps as belonging together.
This is suboptimal as multiple people overlap significantly,
yet most approaches choose to ignore such cases (possibly
for inference speed/efficiency reasons). The best perform-
ing approach ProTracker [11] relies on simple matching be-
tween frames based on Hungarian algorithm and matching
cost based on intersection-over-union score between person
bounding boxes. None of the methods is end-to-end in the
sense that it is able to directly infer articulated people tracks
from video. We observe that the pose tracking performance
of the top five submitted methods saturates at around 50
MOTA, with the top four approaches showing rather simi-
lar MOTA results (51.8 for submission ProTracker [11] vs.
50.6 for submission BUTD [24] vs. 48.4 for PoseTrack vs.
48.1 for ArtTrack), indicating room for improvement on this
task.

Training data. Most submissions found it necessary to
combine our training set with datasets of static images such
as COCO and MPII-Pose to obtain a joint training set with
larger appearance variability. The most common procedure
was to pre-train on external data and then fine-tune on our
training set. Our training set is composed of 2437 peo-
ple tracks with 61,178 annotated body poses and is com-
plementary to COCO and MPII-Pose which include an or-
der of magnitude more individual people but do not pro-
vide motion information. We quantify the performance im-
provement due to training on additional data in Tab. 4 using
our ArtTrack baseline. Extending the training data with the
MPII-Pose dataset improves the performance considerably
(55.5 vs. 68.7 mAP). The combination of our dataset and
MPII-Pose still performs better than MPII-Pose alone (66.4
vs. 68.7) showing that datasets are indeed complementary.

None of the approaches in our evaluation employs any
form of learning on the provided video sequences beyond
simple cross-validation of a few hyperparameters. This can
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Figure 4: Sequences sorted by average MOTA (left). Pose estimation results sorted according to articulation complexity of
the sequence (middle). Visualization of correlation between mAP and MOTA for each sequence (right). Note the outliers in
right plot that correspond to sequences where pose estimation works well but tracking still fails.

be in part due to relatively small size of our training set.
One of the lessons learned from our work on this bench-
mark is that creating truly large annotated datasets of ar-
ticulated pose sequences is a major challenge. We envi-
sion that future work will combine manually labeled data
with other techniques such as transfer learning from other
datasets such as [5], inferring sequences of poses by prop-
agating annotations from reliable keyframes [6], and lever-
aging synthetic training data as in [47].
Dataset difficulty. We composed our dataset by includ-
ing videos around the keyframes from MPII Human Pose
dataset that included several people and non-static scenes.
The rationale was to create a dataset that would be non-
trivial for tracking and require methods to correctly resolve
effects such as person-person occlusions. In Fig. 4 we vi-
sualize performance of the evaluated approaches on each
of the test sequences. We observe that test sequences vary
greatly with respect to difficulty both for pose estimation as
well as for tracking. E.g., for the best performing submis-
sion ProTracker [11] the performance varies from nearly
80 MOTA to a score below zero1. Note that the approaches
mostly agree with respect to the difficulty of the sequences.
More difficult sequences are likely to require methods that
are beyond simple tracking component based on frame-to-
frame assignment used in the currently best performing ap-
proaches. To encourage submissions that explicitly address
challenges in the difficult portions of the dataset we have
defined easy/moderate/hard splits of the data and report re-
sults for each of the splits as well as the full set.
Evaluation metrics. The MOTA evaluation metric has a
deficiency in that it does not take the confidence score of
the predicted tracks into account. As a result achieving good
MOTA score requires tuning of the pose detector threshold
so that only confident track and pose hypothesis are sup-

1Note that MOTA metric can become negative for example when the
number of false positives significantly exceeds the number of ground-truth
targets.

plied for evaluation. This in general degrades pose estima-
tion performance as measured by mAP (c.f . performance of
submission ProTracker [11] in Tab. 2 and 3). We quantify
this in Fig. 5 for our ArtTrack baseline. Note that filter-
ing the detections with score below τ = 0.8 as compared
to τ = 0.1 improves MOTA from 38.1 to 53.4. One po-
tential improvement to the evaluation metric would be to
require that pose tracking methods assign confidence score
to each predicted track as is common for pose estimation
and object detection. This would allow one to compute a
final score as an average of MOTA computed for a range
of track scores. Current pose tracking methods typically do
not provide such confidence scores. We believe that extend-
ing the evaluation protocol to include confidence scores is
an important future direction.

5. Dataset Analysis
In order to better understand successes and failures of

the current body pose tracking approaches, we analyze their
performance across the range of sequences in the test set.
To that end, for each sequence we compute an average over
MOTA scores obtained by each of the seven evaluated meth-
ods. Such average score serves us as an estimate for the
difficulty of the sequence for the current computer vision
approaches. We then rank the sequences by the average
MOTA. The resulting ranking is shown in Fig. 4 (left) along
with the original MOTA scores of each of the approaches.
First, we observe that all methods perform similarly well
on easy sequences. Fig. 5 shows a few easy sequences with
an average MOTA above 75%. Visual analysis reveals that
easy sequences typically contain significantly separated in-
dividuals in upright standing poses with minimal changes of
body articulation over time and no camera motion. Track-
ing accuracy drops with the increased complexity of video
sequences. Fig. 6 shows a few hard sequences with average
MOTA accuracy below 0. These sequences typically in-
clude strongly overlapping people, and fast motions of peo-

7



Figure 5: Selected frames from sample sequences with MOTA score above 75% with predictions of our ArtTrack-baseline
overlaid in each frame. See text for further description.

1 2 3 4

5 6 7 8
Figure 6: Selected frames from sample sequences with negative average MOTA score. The predictions of our ArtTrack-
baseline are overlaid in each frame. Challenges for current methods in such sequences include crowds (images 3 and 8),
extreme proximity of people to each other (7), rare poses (4 and 6) and strong camera motions (3, 5, 6, and 8).

ple and camera.
We further analyze how tracking and pose estimation

accuracy are affected by pose complexity. As a measure
for the pose complexity of a sequence we employ an av-
erage deviation of each pose in a sequence from the mean
pose. The computed complexity score is used to sort video
sequences from low to high pose complexity and average
mAP is reported for each sequence. The result of this eval-
uation is shown in Fig. 4 (middle). For visualization pur-
poses, we partition the sorted video sequences into bins of
size 10 based on pose complexity score and report average
mAP for each bin. We observe that both body pose estima-
tion and tracking performance significantly decrease with
the increased pose complexity. Fig. 4 (right) shows a plot
that highlights correlation between mAP and MOTA of the
same sequence. We use the mean performance of all meth-
ods in this visualization. Note that in most cases more ac-
curate pose estimation reflected by higher mAP indeed cor-
responds to higher MOTA. However, it is instructive to look
at sequences where poses are estimated accurately (mAP is
high), yet tracking results are particularly poor (MOTA near
zero). One of such sequences is shown in Fig. 6 (8). This
sequence features a large number of people and fast camera
movement that is likely confusing simple frame-to-frame
association tracking of the evaluated approaches. Please see
supplemental material for additional examples and analyses

of challenging sequences.

6. Conclusion

In this paper we proposed a new benchmark for hu-
man pose estimation and articulated tracking that is signif-
icantly larger and more diverse in terms of data variability
and complexity compared to existing pose tracking bench-
marks. Our benchmark enables objective comparison of
different approaches for articulated people tracking in re-
alistic scenes. We have set up an online evaluation server
that permits evaluation on a held-out test set, and have mea-
sures in place to limit overfitting on the dataset. Finally,
we conducted a rigorous survey of the state of the art. Due
to the scale and complexity of the benchmark, most existing
methods build on combinations of proven components: peo-
ple detection, single-person pose estimation, and tracking
based on simple association between neighboring frames.
Our analysis shows that current methods perform well on
easy sequences with well separated upright people, but are
severely challenged in the presence of fast camera motions
and complex articulations. Addressing these challenges re-
mains an important direction for future work.
Acknowledgements. UI and JG have been supported by
the DFG project GA 1927/5-1 (FOR 2535) and the ERC
Starting Grant ARCA (677650).
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