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A. Consistent Labels for LiDAR Sequences
In this section, we explain the implementation of our

point cloud labeling tool in more detail and the rationale be-
hind our decision to subdivide the sequences spatially, but
not temporally, for getting consistently labeled point cloud
sequences. The labeling tool itself was critical to provide
the amount of scans with such fine-grained labels.

In summary, we developed an OpenGL-based labeling
tool, which exploits parallelization on the GPU. The main
challenge is the visualization of vast amounts of point data,
but also processing these at the same time, while reaching
responsiveness that allows the annotator to label interac-
tively the aggregated point clouds. Figure 1 shows our point
cloud annotation program visualizing an aggregated point
cloud of over 20 million points. We provide a wide range of
tools for annotation, like a brush, a polygon tool, and differ-
ent filtering methods to hide selected labels. Even with that
many points, we are still able to maintain interactive label-
ing capabilities. Changes to the label of the points inside the
aggregated point cloud are reflected in the individual scans,
which enables high consistency of the labels over time.

Since we are labeling each point, we are able to anno-
tate objects, even with complex occlusions, more precisely
than just using bounding volumes [11]. For instance, we
ensured that ground points below a car are labeled accord-
ingly, which was enabled by our filtering capabilities of the
annotation tool.

To accelerate the search for points that must be labeled,
we used a projective approach to assign labels. To this end,
we determine for each point the two-dimensional projection
on the screen and then determine for the projection if the
point is near to the clicked position (in case of the brush)
or inside the selected polygon. Therefore, annotators had
to ensure that they did not choose a view that essentially
destroyed previously assigned points.

Usually, an annotator performed the following cycle to
annotate points: (1) mark points with a specific label and (2)
filter points with that label. Due to the filtering of already

Figure 1. Point cloud labeling tool. In the upper left corner the user
sees the tile and the sensor’s path indicated by the red trajectory.

labeled points, one can resolve occlusions and furthermore
ensure that the aforementioned projective labeling does not
destroy already labeled points.

Tile-Based Labeling. An important detail is the afore-
mentioned spatial subdivision of the complete aggregated
point cloud into tiles (also shown in the left upper part of
Figure 1). Initially, we simply rendered all scans in a range
of timestamps, say 100 − 150, and then moved on the next
part, say 150−200. However, this leads quickly to inconsis-
tencies in the labels, since scans from such parts still overlap
and therefore must be relabeled to match labels from be-
fore. Since we, furthermore, encounter loop closures with a
considerable temporal distance, this overlap can even hap-
pen between parts of the sequences that are not temporally
close, which even more complicated the task.

Thus, it quickly became apparent that such an additional
effort to ensure consistent labels would lead to an unrea-
sonable complicated annotations process and consequently
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to insufficient results. Therefore, we decided to subdivide
the sequence spatially into tiles, where each tile contains all
points from scans overlapping with this tile. Consistency
at the boundaries between tiles was achieved by having a
small overlap between the tiles, which enabled to consis-
tently continue the labels from one tile into another neigh-
boring tile.

Moving Objects. We annotated all moving objects, i.e.,
car, truck, person, bicyclist, and motorcyclist, and each
moving object is represented by a different class to distin-
guish it from its corresponding non-moving class. In our
case, we assigned an object the corresponding moving class
when it moved at some point in time while observing it with
the sensor.

Since moving objects will appear at different places
when aggregating scans captured from different sensor lo-
cations, we had to take special care to annotate moving ob-
jects. This is especially challenging, when multiple types of
vehicles move on the same lane, like in most of the encoun-
tered highway scenes. We annotated moving objects either
by filtering ground points or by labeling each scan individ-
ually, which was often necessary to label points of tires of
a car and bicycles or the feet of persons. But scan-by-scan
labeling was also necessary in aforementioned cases where
multiple vehicles of different type drive on the same lane.
The labeling of moving objects often was the first step when
annotating a tile, since this allowed the annotator to filter all
moving points and then concentrate on the static parts of the
environment.

B. Basis of the Dataset

The basis of our dataset is data from the KITTI Vision
Benchmark [3], which is still the largest collection of data
also used in autonomous driving at the time of writing. The
KITTI dataset is the basis of many experimental evaluations
in different contexts and was extended by novel tasks or ad-
ditional data over time. Thus, we decided to build upon this
legacy and also enable synergies between our annotations
and other parts and tasks of the KITTI Vision Benchmark.

We particularly decided to use the Odometry Benchmark
to enable usage of the annotation data with this task. We
expect that exploiting semantic information in the odome-
try estimation is an interesting avenue for future research.
However, also other tasks of the KITTI Vision Benchmark
might profit from our annotations and the pre-trained mod-
els we will publish on the dataset website.

Nevertheless, we hope that our effort and the availability
of the point labeling tool will enable others to replicate our
work on future publicly available datasets from an automo-
tive LiDAR.

C. Class Definition
In the process of labeling such large amounts of data,

we had to decide which classes we want to be annotated
at some point in time. In general, we followed the class
definitions and selection of the Mapillary Vistas dataset [5]
and Cityscapes [2] dataset, but did some simplifications and
adjustments for the data source used.

First, we do not explicitly consider a rider class for per-
sons riding a motorcycle or a bicycle, since the available
point clouds do not provide the density for a single scan to
distinguish the person riding a vehicle. Furthermore, we get
for such classes only moving examples and therefore cannot
easily aggregate the point clouds to increase the fidelity of
the point cloud and make it easier to distinguish the rider of
a vehicle and the vehicle.

The classes other-structure, other-vehicle, and other-
object are fallback classes of their respective root category
in unclear cases or missing classes, since this simplified the
labeling process and might be used to distinguish these cat-
egories further in future.

Annotators often annotated some object or part of the
scene and then hide the labeled points to avoid overwriting
or removing the labels. Thus, assigning the fallback class in
ambiguous cases or cases where a specific class was missing
made it possible to simply hide that class to avoid overwrit-
ing it. If we had instructed the annotators to label such parts
as unlabeled, it would have caused problems to consistently
label the point clouds.

We furthermore distinguished between moving and non-
moving vehicles and humans, i.e., a vehicle or human gets
the ‘moving’ tag if it moved in some consecutive scans
while being observed by the LiDAR sensor.

In summary, we annotated 28 classes and all annotated
classes with their respective definitions are listed in Table 1
on the next page.

D. Baseline Setup
We modified the available implementations such that the

methods could be trained and evaluated on our large-scale
dataset with very sparse point clouds due to the LiDAR sen-
sor. Note that most of these approaches have so far only
been evaluated on small RGB-D indoor datasets.

We restricted the number of points within a single scan
due to memory limitations on some approaches [6, 7] to
50 000 via random sampling.

For SPLATNet, we used the SPLATNet3D1 architecture
from [8]. The input consisted per point of the 3D posi-
tion and its normal. The normals were previously estimated
given 30 closest neighbors.

With TangentConv2 we used the existing configuration

1https://github.com/NVlabs/splatnet
2https://github.com/tatarchm/tangent_conv

https://github.com/NVlabs/splatnet
https://github.com/tatarchm/tangent_conv


cat. class definition
G

ro
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te

d
road Drivable areas where cars are allowed to drive on including service lanes, bike lanes,

crossed areas on the street. Only the road surface is labeled excluding the curb.
sidewalk Areas used mainly by pedestrians, bicycles, but not meant for driving with a car. This

includes curbs and spaces where you are not allowed to drive faster than 5 km /h.
Private driveways are also labeled as sidewalk. Here cars should also not drive with
regular speeds (such as 30 or 50 km / h).

parking Areas meant explicitly for parking and that are clearly separated from sidewalk and
road by means of a small curb. If unclear then other-ground or sidewalk can be se-
lected. Garages are labeled as building and not as parking.

other-ground This label is chosen whenever a distinction between sidewalk and terrain is unclear.
It includes (paved/plastered) traffic islands which are not meant for walking. Also the
paved parts of a gas station are not meant for parking.

st
ru

ct
ur

es building The whole building including building walls, doors, windows, stairs, etc. Garages
count as building.

other-structure This includes other vertical structures, like tunnel walls, bridge posts, scaffolding on
a building from a construction site or bus stops with a roof.

ve
hi

cl
e

car Cars, jeeps, SUVs, vans with a continuous body shape (i.e. the driver cabin and cargo
compartment are one) are included.

truck Trucks, vans with a body that is separate from the driver cabin, pickup trucks, as well
as their attached trailers.

bicycle Bicycles without the cyclist or possibly other passengers. If the bicycle is driven by a
person or a person stands nearby the vehicle, we label it as bicyclist.

motorcycle Motorcycles, mopeds without the driver or other passengers. Includes also motorcy-
cles covered by a cover. If the motorcycle is driven by a person or a person stands
nearby the vehicle, we label it as motorcyclist.

other-vehicle Caravans, Trailers and fallback category for vehicles not explicitly defined otherwise
in the meta category vehicle. Included are buses intended for 9+ persons for public or
long-distance transport. This further includes all vehicles moving on rails, e.g., trams,
trains.

na
tu

re

vegetation Vegetation are all bushes, shrubs, foliage, and other clearly identifiable vegetation.

trunk The tree trunk is labeled as trunk separately from the treetop which gets the label
vegetation.

terrain Grass and all other types of horizontal spreading vegetation, including soil.

hu
m

an

person Humans moving by their own legs, sitting, or any unusual pose, but not meant to drive
a vehicle.

bicyclist Humans driving a bicycle or standing in close range to a bicycle (within arm reach).
We do not distinguish between riders and bicyclist.

motorcyclist Humans driving a motorcycle or standing in close range to a motorcycle (within arm
reach).

ob
je

ct

fence Separators, like fences, small walls and crash barriers.
pole Lamp posts and the poles of traffic signs.
traffic sign Traffic sign excluding its mounting. Spurious points in a layer in front and behind the

traffic sign are also labeled as traffic sign and not as outlier.
other-object Fallback category that includes advertising columns.

ou
tli

er outlier Outlier are caused by reflections or inaccuracies in the deskewing of scans, where it is
unclear where the points came from.

Table 1. Class definitions.
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TangentConv 83.9 64.0 38.3 15.3 85.8 84.9 40.3 21.1 42.2 2.0 18.2 18.5 30.1 79.5 43.2 56.7 1.6 6.4 0.0 1.1 0.0 1.9 49.1 36.4 31.2 34.1
DarkNet53Seg 91.6 75.3 64.9 27.5 85.2 84.1 61.5 20.0 37.8 30.4 32.9 20.7 28.9 78.4 50.7 64.8 7.5 15.2 0.0 14.1 0.0 0.2 56.5 38.1 53.3 41.6

Table 2. IoU results using a sequence of multiple past scans (in %).
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Approach pr
ec

is
io

n

re
ca

ll

Io
U

ro
ad

si
de

w
al

k

pa
rk

in
g

ot
he

r-
gr

ou
nd

bu
ild

in
g

ca
r

tr
uc

k

bi
cy

cl
e

m
ot

or
cy

cl
e

ot
he

r-
ve

hi
cl

e

ve
ge

ta
tio

n

tr
un

k

te
rr

ai
n

pe
rs

on

bi
cy

cl
is

t

m
ot

or
cy

cl
is

t

fe
nc

e

po
le

tr
af

fic
si

gn

m
Io

U

SSCNet 31.71 83.40 29.83 27.55 16.99 15.60 6.04 20.88 10.35 1.79 0 0 0.11 25.77 11.88 18.16 0 0 0 14.40 7.90 3.67 9.53
TS3D 31.58 84.18 29.81 28.00 16.98 15.65 4.86 23.19 10.72 2.39 0 0 0.19 24.73 12.46 18.32 0.03 0.05 0 13.23 6.98 3.52 9.54
TS3D
+ DarkNet53Seg 25.85 88.25 24.99 27.53 18.51 18.89 6.58 22.05 8.04 2.19 0.08 0.02 3.96 19.48 12.85 20.22 2.33 0.61 0.01 15.79 7.57 6.99 10.19
TS3D
+ DarkNet53Seg
+ SATNet 80.52 57.65 50.60 62.20 31.57 23.29 6.46 34.12 30.70 4.85 0 0 0.07 40.12 21.88 33.09 0 0 0 24.05 16.89 6.94 17.70

Table 3. Results for scene completion and class-wise results for semantic scene completion (in %).
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PointNet 50 000 - 3 · 10−4×0.9epoch 33 3

PointNet++ 45 000 - 3 · 10−3×0.9epoch 25 3
TangentConv 120 000 - 1 · 10−4 10 3
SPLATNet 50 000 - 1 · 10−3 20 -
SqueezeSeg 64× 2048 3 1 · 10−2×0.99epoch 200 3

DarkNet21Seg 64× 2048 3 1 · 10−3×0.99epoch 40 3

DarkNet53Seg 64× 2048 3 1 · 10−3×0.99epoch 120 3

m
ul

ti
sc

an TangentConv 500 000 - 5∗ 3

DarkNet53Seg64 64× 2048 3 1 · 10−3×0.99epoch 40∗ 3

Table 4. Approach statistics. ∗ in number of epochs means that it
was started from the pretrained weights of the single scan version.

for Semantic3D. We sped up the training and validation
procedures by precomputing scan batches and added asyn-
chronous data loading. Complete single scans were pro-
vided during training. In the multi scan experiment we fixed
the number of points per batch to 500 000 due to mem-
ory constraints and started training from the single scan
weights.

For SqueezeSeg [10] and its Darknet backbone equiv-
alents, we used a spherical projection of the scans in the
same way as the original SqueezeSeg approach. The pro-
jection contains 64 lines in height corresponding with the
separate beams of the sensor, and extrapolating the config-
uration of SqueezeSeg which only uses the front 90◦ and
a horizontal resolution of 512, we use 2048 for the entire
scan. Because some points are duplicated in this sampling
process, we always keep the closest range value, and in in-

ference of each scan we iterate over the entire point list and
check it’s semantic value in the output grid.

An overview of the used parameters is given in Table 4.
We furthermore provide the number of trained epochs and
if we could get a results which seems to be converged in the
given amount of time.

E. Results using Multiple Scans
The full per class IoU results for the multiple scans ex-

periment are listed in Table 2. As already mentioned in
the main text, we generally observe that the IoU of static
classes is mostly unaffected by the availability of multiple
past scans. To some extent, the IoU for some classes in-
creases slightly. The drop in performance in terms of mIoU
is mainly caused by the additional challenge to correctly
separate moving and non-moving classes.

F. Semantic Scene Completion
Table 3 shows the class-wise results for semantic scene

completion as well as precision and recall for scene com-
pletion. One can see that TS3D + DarkNet53Seg performs
slightly better than SSCNet and TS3D. Note that Dark-
Net53Seg has been pretrained on the exact same classes
as required for semantic scene completion. TS3D on the
other hand uses DeepLab v2 (ResNet-101) [1] pretrained
on the Cityscapes [2] dataset, which does not differentiate
between classes such as other-ground, parking or trunk for
example. Another reason might be that 2D semantic labels
projected back onto the point cloud is not very accurate es-
pecially at object boundaries, where labels often bleed onto



Figure 2. Qualitative results for the semantic scene completion approach TS3D + DarkNet53Seg + SATNet. Left: Input volume. Middle:
Network prediction. Right: Ground truth. Due to memory limitations the inference has to be done in six steps on overlapping subvolumes.
The subvolumes are consequently fused to obtain the final result.

distant objects. This is because in the 2D projection, they
are close to each other, a problem that is inherent to the pro-
jection method. The best approach (TS3D + DarkNet53Seg
+ SATNet) outperforms the other approaches significantly
(+20.77% IoU on scene completion and +7.51% mIoU on
semantic scene completion). As mentioned above, it is the
only approach capable of producing high resolution out-
puts. This approach however suffers from huge memory
consumption. Therefore, during training the input volume is
randomly cropped to volumes of grid size 64×64×32 while
during inference, each volume gets divided into 6 overlap-
ping blocks of size 90 × 138 × 32 for which the inference
is performed individually. The individual blocks are subse-
quently fused to obtain the final result. Figure 2 shows an
example result of this approach.

Rare classes like bicycle, motorcycle, motorcyclist, and
person are not or almost not recognized. This suggests that
these classes are potentially hard to recognize, as they rep-
resent a small and rare signal in the SemanticKITTI data.

G. Qualitative Results

Figure 3 shows qualitative results for the evaluated base-
line approaches on a scan from the validation data. Here
we show the spherical projections of the results to enable
an easier comparison of the results.

With increasing performance in terms of mean IoU (top
to bottom), see also Table 2 of the paper, we see that ground
points get better separated into the classes sidewalk, road,
and parking. In particular, parking areas need a lot of con-
textual information and also information from neighboring
points, since often a small curb distinguishes the parking
area from the road.

In general, one can see definitely an increased accuracy
for smaller objects like the poles on the right side of the im-
age, which indicates that the extra parameters of the models
with the largest capacity (25 million as in the case of Dark-
Net21Seg and 50 million as in the case of Darknet53Seg)
are needed to distinguish smaller classes and class with few
examples.

H. Dataset and Baseline Access API

Along with the annotations and the labeling tool, we also
provide a public API implemented in Python.

In contrast to our labeling tool, which is intended for al-
lowing users to easily extend this dataset, and generate oth-
ers for other purposes, this API is intended to be used to eas-
ily access the data, calculate statistics, evaluate metrics, and
access several implementations of different state-of-the-art
semantic segmentation approaches. We hope that this API
will serve as a baseline to implement new point cloud se-
mantic segmentation approaches, and will provide a com-
mon framework to evaluate them, and compare them more
transparently with other methods. The choice of Python as
the underlying language for the API is that it is the cur-
rent language of choice for the front end for deep learn-
ing framework developers, and therefore, for deep learning
practitioners.

Figure 4 gives an overview of the labeled sequences
showing the estimated trajectories and the aggregated point
cloud over the whole sequence.
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Figure 4. Qualitative overview of labeled sequences and trajectories.


