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Abstract. We present a method for tracking people in monocular broad-
cast sports videos by coupling a particle filter with a vote-based confi-
dence map of athletes, appearance features and optical flow for motion
estimation. The confidence map provides a continuous estimate of possi-
ble target locations in each frame and outperforms tracking with discrete
target detections. We demonstrate the tracker on sports videos, tracking
fast and articulated movements of athletes such as divers and gymnasts
and on non-sports videos, tracking pedestrians in a PETS2009 sequence.

1 Introduction

Object tracking in video is a long-standing computer vision problem; in par-
ticular, tracking people has captured the interest of many researchers due to
its potential for applications such as intelligent surveillance, automotive safety
and sports analysis. State-of-the-art people trackers have predominantly focused
on pedestrians for traffic or surveillance scenarios. For sports analysis, however,
standard pedestrian trackers face significant challenges since in many broadcast
sports, the camera moves and zooms to follow the movements of the athlete.
Furthermore, in some sports, the athlete may perform abrupt movements and
have extensive body articulations that result in rapid appearance changes and
heavy motion blur. As such, sports tracking to date [1–6] has been limited to
team sports such as football and hockey, in which there is wide view of the
playing field and athletes remain relatively upright. In addition, these works are
primarily focused on the data-association problem of multi-target tracking and
do not deviate substantially from the pedestrian tracking scenario.

In the current work, we present a method for tracking people in monocular
broadcast sports videos by coupling a standard particle filter [7] with a vote-
based confidence map of an “athlete”-detector [8]. We target sporting disciplines
in which the athletes perform fast and highly articulated movements, e.g. diving
and gymnastics. Tracking in these types of sports is particularly difficult since
the athletes do not remain in an upright configuration. Our confidence map,
built from the Hough accumulator of a generalized Hough transform designed
for people detection, is well suited for handling pose and appearance changes and
athlete occlusions, as it is generated from a vote-based method. While we focus
on tracking in broadcast sports clips, as they provide a challenging testbed,
our method is applicable to generic people tracking in unconstrained videos.
We demonstrate the tracker’s effectiveness on the UCF Sports Dataset [9], a
collection of footage from the 2008 Olympics and a PETS 2009 sequence [10].
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(a) motion blur (b) extensive articulation (c) occlusion

Fig. 1. Select frames from the UCF Sports Dataset [9], showing challenges of track-
ing in sports videos such as (a) motion blur, (b) extensive body articulation and (c)
occlusions.

2 Related Works

Early approaches in sports tracking began with background extraction and then
morphological operations to isolate foreground areas which may represent the
athlete [1, 2, 11]. Tracking was then performed by enforcing spatial continuity
through either Kalman or particle filtering. These approaches, both single- and
multi-camera, relied heavily on colour as a cue for separating the athletes from
the background as well as for tracking, though shape and motion information
of the athletes have also been used [12, 4]. Most of the proposed algorithms,
however, have been designed for specific sports, such as soccer [1, 2], speed-
skating [13] or hockey [3] and rely on sport-specific scene-knowledge, such as
distances between field lines [14].

Accurate modelling of target observations, be it athletes, pedestrians or
generic objects has been the focus of several current tracking works. One line
of approach learns and adapts appearance models online [15–17]; these methods
cope well with appearance changes and are not limited to tracking specific object
classes, but are susceptible to drift as tracking errors accumulate. Another line of
approach uses pre-trained models of the targets. Tracking-by-detection methods
follow this type of paradigm, in which object detectors are first trained offline and
detections across the sequence are then associated together to form the track,
e.g. by particle filtering. Tracking-by-detection has been used for pedestrians [5,
18, 19] and in specific sports such as hockey [3, 5] and soccer [5, 6]. All these
approaches, however, assume that the humans remain upright - an assumption
that does not hold for broadcast sports videos in general.
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(a) original frame (b) vote-based confidence
map from Hough Forest [8]

(c) camera movement esti-
mation from frame borders

(d) optical flow (e) particle distribution
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(f) colour and texture ap-
pearance evaluation

Fig. 2. Components of the sports tracker. From the original frame(a), the vote-based
confidence map(b) is computed using a Hough Forest [8]. The dynamical model esti-
mates camera motion from the frame border(c) and motion of the tracked athlete from
the frame interior using optical flow(d). Each particle in the particle distribution(e) is
weighted according to the confidence map and appearance features such as colour and
texture(f).

The key component of our tracker is the use of a vote-based confidence map
to estimate the location of the targets. It is similar in spirit to the Fragment
Tracker in [20], which tracks object fragments or patches that vote for an object
center. Our work differs from [20] in that we track possible object centres from
the accumulated votes in the confidence map rather than the individual patches
that vote for a center.

3 Sports Tracker

The sports tracker is a tracking-by-detection approach with three components:
(1)a continuous vote-based confidence map to estimate the target location (see 3.2),
(2)appearance matching of the target based on feature templates (see 3.3) and
(3)motion estimation of the camera and the target from optical flow (see 3.4).

3.1 Tracking Overview

Tracking in the sports videos is done using a particle filter [7]. We model the
state s = {x, y, c, u, v, d} ∈ R6 of a human by the image position and scale
(x, y, c) and velocity and change in scale (u, v, d). For particle i, the weight at
frame t is assigned as follows:

wi
t =

1
Z

exp
(
−K ·

(
α · V1(si

t) + (1− α) ·
∑

f

λfV2(si
t, f)

))
. (1)
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The term V1 measures the response in the vote space (Figure 2(b), see 3.2) for
particle si

t. The term V2 measures the similarity of particle si
t with respect to

some template appearance feature f extracted from the associated bounding box
of the particle (Figure 2(f), see 3.3). K is a scaling constant and α∈[0, 1] is a
weighting parameter for V1 and V2. λf are weighting parameters between the
different features and sum up to 1. Z is the normalization term of the weights.

The tracker is initialized using the ground truth from the first frame of the
sequence. Particles are propagated by a dynamical model accounting for camera
motion (Figure 2(c)) and estimated athlete motion(Figure 2(d), see 3.4).

3.2 Vote-Based Confidence Map

The confidence map is generated from the output of a Hough forest [8] trained
for detecting athletes. The Hough forest is a random forest trained to map image
feature patches to probabilistic votes in a 3D Hough accumulator H for locations
and scales of the athlete. We use cropped and scale-normalized images of the
athletes as positive examples, background images as negative examples, and
colour and histograms of gradients [21] as features. For a detailed description of
the training procedure, we refer to [8]. For detection, feature patches are densely
sampled from the image and passed through the trees of the Hough forest to cast
votes in H. While a detector as in [8] thresholds the local maxima in H to obtain
a discrete set of object hypotheses, we consider H as a continuous confidence
mapping of athlete locations and scales. From H, the vote response V1

(
si

t

)
of

particle si
t is determined by

V1(si
t) = − log

( ∑
x∈N (st)∩H

G(si
t − x)

)
, (2)

i.e. we sum the votes in the neighborhood N of st weighted by a Gaussian kernel
G. Note that the sum is in the range of [0, 1].

3.3 Appearance Model

The appearance of particle si
t, denoted as V2

(
si

t, f
)
, is a measure of similarity

between that particle’s feature response hf
(
si

t

)
and some template hf

T for feature
f . To measure similarity, we use the Bhattacharyya coefficient BC:

V2

(
si

t, f
)

= 1−BC(hf
T , h

f (si
t)) (3)

As image features, we use HSV colour histograms and local binary patterns [22]
to model colour and texture respectively. For the template, we use a weighted
mixture of the particle’s feature response in the initial frame at t0 and the
previous frame t−1. Weighting of the individual appearance features in the final
particle weight (Equation 1) is determined by λf , in our case λcolour and λtexture.



Tracking People in Broadcast Sports 5

3.4 Dynamical Model

For the dynamical model, we use an estimated velocity based on optical flow.
The reason for this is two-fold. First, constant-velocity models which perform
well for tracking walking or running people perform poorly for actions in which
the athletes move erratically, i.e. in gymnastics. Secondly, in many broadcast
sports, the cinematography already provides some framing and tracking of the
athlete, i.e. when the camera pans to follow the athlete across a scene. As such,
the position of the athlete changes in an inconsistent manner within the frame
and it is necessary to estimate the particle motion while accounting for camera
motion. Particles are propagated from frame to frame by

(x, y, c)i
t = (x, y, c)i

t−1 + (u, v, d)i
t−1 +N (0,σtran) , (4)

where σtran is the variance of added Gaussian noise for the transition. Velocity
is estimated as a weighted mixture between camera-compensated optical flow
and velocity in the previous frame, while change in scale remains constant.

(u, v)i
t = η ·

(
(u, v)of

t−1 − γ · (u, v)cam
t−1

)
+ (1− η) · (u, v)i

t−1 (5)

Optical flow is computed according to [23]; camera motion is estimated as the
average optical flow in the border of the frame (Figure 2(b)). η is a weighting
parameter between estimated motion versus a constant velocity assumption,
while γ serves as a scaling parameter for the estimated camera motion.

4 Experiments

4.1 Datasets

We evaluate our tracker on sports and non-sports videos. For sports, we use
the UCF Sports Dataset [9] and our own collection of Olympics footage. The
UCF dataset, consisting of 150 sequences (50-100 frames each) from network
news videos, was originally intended for action recognition. To supplement the
UCF dataset, we annotated 31 sequences (150-2000 frames each) from the 2008
Olympics, featuring sports such as diving, equestrian and various disciplines of
gymnastics. The sequences are longer and more challenging than UCF, with
significant motion blur and de-interlacing artifacts. For non-sports videos, we
track three people from the PETS 2009 [10] sequence S2.L1, View001. For the
sports datasets, we train on all images of annotated athletes within the dataset
other than from the test sequence, in a leave-one-out fashion. For the PETS
sequence, we trained on the TUD pedestrian database [18].

4.2 Evaluation

For evaluation, we use the VOC [24] criterion (the intersection over union, IOU,
of the tracked bounding box and the ground truth bounding box must be greater
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Experimental Variation Affected Parameter/Variable % of frames with IOU> 0.5

Default NA 75.4± 13.4

Discrete detections V1 from discrete detections 26.1± 17.2
No detections α = 0 28.1± 17.3

No colour features λcolour = 0, λtexture = 1 73.9± 12.3
No texture features λcolour = 1, λtexture = 0 71.3± 10.3
No appearance features α = 1 70.4± 13.1

No camera compensation γ = 0 71.8± 11.7
Constant velocity η = 0 71.8± 15.0

Table 1. Average tracking performance on the Olympics sequences, where a higher %
indicates better performance. There is a decrease in tracking performance with each
removed component of the tracker; the most critical component seems to be the vote
map, as using discrete components results in significantly lower performance.

than 0.5). We hand annotated select frames of the Olympics data and the PETS
sequence and used linear interpolation to generate bounding boxes for the frames
in between. For the UCF database, bounding boxes were provided as a part of
the ground truth annotation released with the data.

We run three experiments on the Olympics data to test the impact of each
component of the tracker. First, the confidence map is compared with discrete
detections; for fair comparison, we generate the discrete detections from the con-
fidence maps by thresholding1 the local maxima of H (see 3.2). Second, the effect
of the appearance modelling is tested by removing the colour and texture fea-
tures from the tracker. In the third experiment, we vary the η and γ parameters
and look at the effects of removing camera compensation as well as comparing
our current dynamic model to a constant velocity model. We also compare our
tracker’s performance on the PETS2009 sequence with the Fragment Tracker
in [20], using source code provided on the author’s website2. Run time on all
datasets was around 1 second per frame for 50 particles on a standard CPU.

5 Results

Olympics Data We take the following parameter settings {α=0.5, λcolour=0.09,
λtexture=0.91, η=0.3, γ=1.5} and use these as our default scenario. Parameters
are set at these values for all experiments unless otherwise stated. Results for de-
fault scenario, split by discipline are shown in Figure 3 (a). Tracking results from
the first three experiments are shown in Table 1. From the first experiment, we
see that using the vote-based confidence map in the tracker gives a significant
improvement over the use of discrete detections. In fact, for the sports, hav-
ing discrete detections is comparable to not using any detections (α=0). This
can be attributed to the many false-positive detections with high confidences,
which have the effect of attracting and clustering the particles to erroneous lo-
cations. Our second experiment shows that removing either or both appearance
1 The threshold was set to achieve a high recall.
2 http://www.cs.technion.ac.il/˜amita/fragtrack/fragtrack.htm
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(a) Olympics tracking performance
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(b) UCF tracking performance

Fig. 3. Average tracking performance by sport for (a)Olympics Dataset and (b)UCF
Sports Dataset, where a higher % indicates better performance.

Fig. 4. Tracking on the Olympics sequences: select frames from diving (top), equestrian
(second row), floor routine (third row) and vault (bottom). The tracker successfully
follows the athletes but has difficulty with very fast motions, e.g. on the floor routine,
in the third frame, the tracker fails to track the tumbling sequence through the air.

features results only in a slightly decreased performance, again emphasizing the
importance of the confidence map in the tracker. In the last experiment, we
show that the use of our motion estimate in the dynamical model outperforms
a constant velocity model, particularly with having the camera compensation.
Varying η and γ had little effect, with performance ranging from 71.6%-74.9%.
Select frames from the tracked results are shown in Figure 4.
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Fig. 5. Tracking on the UCF Sports Dataset, showing select frames from running (top
row), skateboarding (middle row) and gymnastics (bottom row).

UCF Sports Dataset Tracking performance for the UCF Dataset are shown in
Figure 3(b); select frames from the tracks are shown in Figure 5. On average,
81.8% ± 16.0% of the frames have tracks with an IOU greater than 0.5. The
tracker performs well in sports where people remain upright, i.e. golfing, running,
and skateboarding, but faces some difficulty with sports with more extensive
articulation such as diving, kicking and gymnastics. Part of the error results
from ground truth being tight bounding boxes around the athletes while tracked
bounding boxes are of a fixed ratio.

PETS2009 We compare the performance of our Sports Tracker with the Frag-
ment Tracker [20] in Table 2. The Sports Tracker successfully follows two of the
three tracks, but breaks down on track 3, most likely due to the lack of multiple
target handling. There are two identity switches, first from the target to another
person at frame 31 when several people group together and then back to the tar-
get after frame 115. Select frames are shown in Figure 6. The Fragment Tracker
successfully tracks one of the three tracks, but suffers from drift on the other
two tracks and around 100 frames into the tracks, loses the target completely.

Track Frame Sports Tracker Fragments Tracker [20]

1 21 - 259 85.4 14.8
2 222 - 794 95.5 12.6
3 0 - 145 13.8 78.6

Table 2. Comparison of the Sports Tracker with the Fragments Tracker in [20] on the
PETS2009 S2.L1 View001 sequence. Results shown are the % of frames with IOU> 0.5,
where a higher % indicates better performance.
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101 181 281 351

294 472 592 795

31 70 115 145

Fig. 6. Select frames from the PETS2009 sequence. The tracker successfully follows
the target in track 1 and 2 (top and middle row). Track 2 is particularly challenging
as it is over 500 frames long and several people including the target are all wearing
black clothing. In frame 294 of track 2, the tracker handles occlusion of the target by
another person wearing similar coloured clothing. In frame 31 of track 3 (bottom row),
there is an identity switch (true target is indicated by the white arrow); in frame 115,
the tracker switches back onto the correct target. Figure is best viewed in colour

6 Conclusion

We have presented a method for tracking athletes in broadcast sports videos.
Our sports tracker combines a particle filter with the vote-based confidence map
of an object detector. The use of feature templates and target motion estimates
add to the performance of the tracker, but the strength of the tracker lies in the
confidence map. By providing a continuous estimate of possible target locations
in each frame, the confidence map greatly outperforms tracking with discrete
detections. Possible extensions to the tracker include making voting for the con-
fidence map adaptive and online, so that tracked bounding boxes are of varying
ratios to yield tight bounding boxes around the athlete’s body, and making a
multi-target version of the tracker to better handle team sports.
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