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Abstract

This paper proposes an end-to-end learning framework
for multiview stereopsis. We term the network SurfaceNet.
It takes a set of images and their corresponding camera pa-
rameters as input and directly infers the 3D model. The key
advantage of the framework is that both photo-consistency
as well geometric relations of the surface structure can be
directly learned for the purpose of multiview stereopsis in
an end-to-end fashion. SurfaceNet is a fully 3D convolu-
tional network which is achieved by encoding the camera
parameters together with the images in a 3D voxel repre-
sentation. We evaluate SurfaceNet on the large-scale DTU
benchmark.

1. Introduction
In multiview stereopsis (MVS), a dense model of a 3D

object is reconstructed from a set of images with known
camera parameters. This classic computer vision problem
has been extensively studied and the standard pipeline in-
volves a number of separate steps [4, 27]. In available mul-
tiview stereo pipelines, sparse features are first detected and
then propagated to a dense point cloud for covering the
whole surface [8, 11], or multiview depth maps are first
computed followed with a depth map fusion step to ob-
tain the 3D reconstruction of the object [15, 17]. A great
variety of approaches have been proposed to improve dif-
ferent steps in the standard pipeline. For instance, the
works [27, 4, 9] have focused on improving the depth map
generation using MRF optimization, photo-consistency en-
forcement, or other depth map post-processing operations
like denoising or interpolation. Other approaches have fo-
cused on more advanced depth fusion algorithms [13].

Recent advances in deep learning have been only par-
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(a) reference model (b) SurfaceNet (c) camp [4]

(d) furu [8] (e) tola [27] (f) Gipuma [9]

Figure 1: Reconstruction of the model 13 of the DTU dataset [1]
in comparison to [4, 8, 27, 9]. Our end-to-end learning framework
provides a relatively complete reconstruction.

tially integrated. For instance, [32] uses a CNN instead
of hand-crafted features for finding correspondences among
image pairs and [10] predicts normals for depth maps using
a CNN, which improves the depth map fusion. The full po-
tential of deep learning for multiview stereopsis, however,
can only be explored if the entire pipeline is replaced by an
end-to-end learning framework that takes the images with
camera parameters as input and infers the surface of the 3D
object. Apparently, such end-to-end scheme has the advan-
tage that photo-consistency and geometric context for dense
reconstruction can be directly learned from data without the
need of manually engineering separate processing steps.

Instead of improving the individual steps in the pipeline,
we therefore propose the first end-to-end learning frame-
work for multiview stereopsis, named SurfaceNet. Specifi-
cally, SurfaceNet is a 3D convolutional neural network that
can process two or more views and the loss function is di-
rectly computed based on the predicted surface from all
available views. In order to obtain a fully convolutional
network, a novel representation for each available view-
point, named colored voxel cube (CVC), is proposed to im-



plicitly encode the camera parameters via a straightforward
perspective projection operation outside the network. Since
the network predicts surface probabilities, we obtain a re-
constructed surface by an additional binarization step. In
addition, an optional thinning operation can be applied to
reduce the thickness of the surface. Besides of binarization
and thinning, SurfaceNet does not require any additional
post-processing or depth fusion to obtain an accurate and
complete reconstruction.

2. Related Works
Works in the multiview stereopsis (MVS) field can be

roughly categorised into volumetric methods and depth
maps fusion algorithms. While earlier works like space
carving [14, 22] mainly use a volumetric representation,
current state-of-the-art MVS methods focus on depth map
fusion algorithms [27, 4, 9], which have been shown to be
more competitive in handling large datasets in practice. As
our method is more related to the second category, our sur-
vey mainly covers depth map fusion algorithms. A more
comprehensive overview of MVS approaches is given in the
tutorial article [7].

The depth map fusion algorithms first recover depth
maps [30] from view pairs by matching similarity patches
[2, 18, 33] along epipolar line and then fuse the depth maps
to obtain a 3D reconstruction of the object [27, 4, 9]. In
order to improve the fusion accuracy, [4] mainly learns sev-
eral sources of the depth map outliers. [27] is designed for
ultra high-resolution image sets and uses a robust decrip-
tor for efficient matching purposes. The Gipuma algorithm
proposed in [9] is a massively parallel method for multi-
view matching built on the idea of patchmatch stereo [3].
Aggregating image similarity across multiple views, [9] can
obtain more accurate depth maps. The depth fusion meth-
ods usually contain several manually engineered steps, such
as point matching, depth map denoising, and view pair se-
lection. Compared with the mentioned depth fusion meth-
ods, the proposed SurfaceNet infers the 3D surface with thin
structure directly from multiview images without the need
of manually engineering separate processing steps.

The proposed method in [8] describes a patch model that
consists of a quasi-dense set of rectangular patches cover-
ing the surface. The approach starts from a sparse set of
matched keypoints that are repeatedly expanded to nearby
pixel correspondences before filtering the false matches us-
ing visibility constraints. However, the reconstructed rect-
angular patches cannot contain enough surface detail, which
results in small holes around the curved model surface. In
contrast, our data-driven method predicts the surface with
fine geometric detail and has less holes around the curved
surface.

Convolutional neural networks have been also used in
the context of MVS. In [10], a CNN is trained to predict

the normals of a given depth map based on image appear-
ance. The estimated normals are then used to improve the
depth map fusion. Compared to its previous work [9], the
approach increases the completeness of the reconstruction
at the cost of a slight decrease in accuracy. Deep learn-
ing has also been successfully applied to other 3D appli-
cations like volumetric shape retrieval or object classifi-
cation [28, 25, 16, 19]. In order to simplify the retrieval
and representation of 3D shapes by CNNs, [24] introduces
a representation, termed geometry image, which is a 2D
representation that approximates a 3D shape. Using the
2D representation, standard 2D CNN architectures can be
applied. While the 3D reconstruction of an object from
a single or multiple views using convolutional neural net-
works has been studied in [26, 5], the approaches focus on
a very coarse reconstruction without geometric details when
only one or very few images are available. In other words,
these methods are not suitable for MVS. The proposed Sur-
faceNet is able reconstruct large 3D surface models with
detailed surface geometry.

3. Overview

We propose an end-to-end learning framework that takes
a set of images and their corresponding camera parameters
as input and infers the 3D model. To this end, we vox-
elize the solution space and propose a convolutional neural
network (CNN) that predicts for each voxel x a binary at-
tribute sx ∈ {0, 1} depending on whether the voxel is on
the surface or not. We call the network, which reconstructs
a 2D surface from a 3D voxel space, SurfaceNet. It can be
considered as an analogy to object boundary detection [29],
which predicts a 1D boundary from 2D image input.

We introduce SurfaceNet in Section 4 first for the case
of two views and generalize the concept to multiple views
in Section 5. In Section 6 we discuss additional implemen-
tation details like the early rejection of empty volumes that
speed up the computation.

4. SurfaceNet

Given two images Ii and Ij for two views vi and vj of
a scene with known camera parameters and a voxelization
of the scene denoted by a 3D tensor C, our goal is to re-
construct the 2D surface in C by estimating for each voxel
x ∈ C if it is on the surface or not, i.e. sx ∈ {0, 1}.

To this end, we propose an end-to-end learning frame-
work, which automatically learns both photo-consistency
and geometric relations of the surface structure. Intuitively,
for accurate reconstruction, the network requires the images
Ii and Ij as well as the camera parameters. However, direct
usage of Ii, Ij and their corresponding camera parameters
as input would unnecessarily increase the complexity of the
network since such network needs to learn the relation be-



tween the camera parameters and the projection of a voxel
onto the image plane in addition to the reconstruction. In-
stead, we propose a 3D voxel representation that encodes
the camera parameters implicitly such that our network can
be fully convolutional.

Figure 2: Illustration of two Colored Voxel Cubes (CVC).

We denote our representation as colored voxel cube
(CVC), which is computed for each view and illustrated in
Fig. 2. For a given view v, we convert the image Iv into a
3D colored cube ICv by projecting each voxel x ∈ C onto
the image Iv and storing the RGB values ix for each voxel
respectively. For the color values, we subtract the mean
color [23]. Since this representation is computed for all
voxels x ∈ C, the voxels that are on the same projection
ray have the same color ix. In other words, the camera pa-
rameters are encoded with CVC. As a result, we obtain for
each view a projection-specific stripe pattern as illustrated
in Fig. 2.

4.1. SurfaceNet Architecture

Figure 3: SurfaceNet takes two CVCs from different viewpoints
as input. Each of the RGB-CVC is a tensor of size (3, s, s, s).
In the forward path, there are four groups of convolutional layers.
The l4.· layers are 2-dilated convolution layers. The side layers si
extract multi-scale information, which are aggregated into the out-
put layer y that predicts the on-surface probability for each voxel
position. The output has the size (1, s, s, s).

The architecture of the proposed SurfaceNet is shown in
Fig. 3. It takes two colored voxel cubes from two different
viewpoints as input and predicts for each voxel x ∈ C the
confidence px ∈ (0, 1), which indicates if a voxel is on

the surface. While the conversion of the confidences into
a surface is discussed in Section 4.3, we first describe the
network architecture.

The detailed network configuration is summarized in Ta-
ble 1. The network input is a pair of colored voxel cubes,
where each voxel stores three RGB color values. For cubes
with s3 voxels, the input is a tensor of size 6×s×s×s. The
basic building blocks of our model are 3D convolutional
layers l(·), 3D pooling layers p(·) and 3D up-convolutional
layers s(·), where ln.k represents the kth layer in the nth
group of convolutional layers. Additionally, a rectified lin-
ear unit (ReLU) is appended to each convolutional layer li
and the sigmoid function is applied to the layers si and y. In
order to decrease the training time and increase the robust-
ness of training, batch normalization [12] is utilized in front
of each layer. The layers in l4 are dilated convolutions [31]
with dilation factor of 2. They are designed to exponentially
increase the receptive field without loss of feature map res-
olution. The layer l5.k increases the performance by aggre-
gating multi-scale contextual information from the side lay-
ers si to consider multi-scale geometric features. Since the
network is fully convolutional, the size of the CVC cubes
can be adaptive. The output is always the same size as the
CVC cubes.

layer name type output size kernel size
input CVC (6, s, s, s) -

l1.1, l1.2, l1.3 conv (32, s, s, s) (3, 3, 3)
s1 upconv (16, s, s, s) (1, 1, 1)
p1 pooling (32, s2 ,

s
2 ,

s
2 ) (2, 2, 2)

l2.1, l2.2, l2.3 conv (80, s2 ,
s
2 ,

s
2 ) (3, 3, 3)

s2 upconv (16, s, s, s) (1, 1, 1)
p2 pooling (80, s4 ,

s
4 ,

s
4 ) (2, 2, 2)

l3.1, l3.2, l3.3 conv (160, s4 ,
s
4 ,

s
4 ) (3, 3, 3)

s3 upconv (16, s, s, s) (1, 1, 1)
l4.1, l4.2, l4.3 dilconv (300, s4 ,

s
4 ,

s
4 ) (3, 3, 3)

s4 upconv (16, s, s, s) (1, 1, 1)
l5.1, l5.2 conv (100, s, s, s) (3, 3, 3)

y conv (1, s, s, s) (1, 1, 1)

Table 1: Architecture of SurfaceNet. A rectified linear activation
function is used after each convolutional layer except y, and a sig-
moid activation function is used after the up-convolutional layers
and the output layer to normalize the output.

4.2. Training

As the SurfaceNet is a dense prediction network, i.e., the
network predicts the surface confidence for each voxel, we
compare the prediction per voxel px with the ground-truth
ŝx. For training, we use a subset of the scenes from the
DTU dataset [1] which provides images, camera parame-
ters, and reference reconstructions obtained by a structured
light system. A single training sample consists of a cube ŜC



cropped from a 3D model and two CVC cubes ICvi and ICvj
from two randomly selected views vi and vj . Since most of
the voxels do not contain the surface, i.e. ŝx = 0, we weight
the surface voxels by

α =
1

|C|
∑
C∈C

∑
x∈C(1− ŝx)
|C|

, (1)

where C denotes the set of sampled training samples, and
the non-surface voxels by 1 − α. We use a class-balanced
cross-entropy function as loss for training, i.e. for a single
training sample C we have:

L(ICvi , I
C
vj , Ŝ

C) = (2)

−
∑
x∈C

{αŝx log px + (1− α)(1− ŝx) log(1− px)} .

For updating the weights of the model, we use stochastic
gradient descent with Nesterov momentum update.

Due to the relatively small number of 3D models in the
dataset, we perform data augmentation in order to reduce
overfitting and improve the generalization. Each cube C is
randomly translated and rotated and the color is varied by
changing illumination and introducing Gaussian noise.

4.3. Inference

For inference, we process the scene not at once due to
limitations of the GPU memory but divide the volume into
cubes. For each cube, we first compute for both camera
views the colored voxel cubes ICvi and ICvj

, which encode
the camera parameters, and infer the surface probability px
for each voxel by the SurfaceNet. Since some of the cubes
might not contain any surface voxels, we discuss in Sec-
tion 6 how these empty cubes can be rejected in an early
stage.

In order to convert the probabilities into a surface, we
perform two operations. The first operation is a simple
thresholding operation that converts all voxels with px > τ
into surface voxels and all other voxels are set to zero. In
Section 6, we discuss how the threshold τ can be adaptively
set when the 3D surface is recovered. The second operation
is optional and it performs a thinning procedure of the sur-
face since the surface might be several voxels thick after the
binarization. To obtain a thin surface, we perform a pooling
operation, which we call ray pooling. For each view, we
vote for a surface voxel sx = 1 if x = argmax

x′∈R
px′ , where

R denotes the voxels that are projected onto the same pixel.
If both operations are used, a voxel x is converted into a sur-
face voxel if both views vote for it during ray pooling and
px > τ .

5. Multi-View Stereopsis
So far we have described training and inference with Sur-

faceNet if only two views are available. We now describe

how it can be trained and used for multi-view stereopsis.

5.1. Inference

If multiple views v1, . . . , vV are available, we select a
subset of view pairs (vi, vj) and compute for a cube C and
each selected view v the CVC cube ICv . We will discuss at
the end of the section how the view pairs are selected.

For each view pair (vi, vj), SurfaceNet predicts p(vi,vj)x ,
i.e. the confidence that a voxel x is on the surface. The
predictions of all view pairs can be combined by taking the
average of the predictions p(vi,vj)x for each voxel. However,
the view pairs should not be treated equally since the recon-
struction accuracy varies among the view pairs. In general,
the accuracy depends on the viewpoint difference of the two
views and the presence of occlusions.

To further identify occlusions between two views vi and
vj , we crop a 64 × 64 patch around the projected center
voxel of C for each image Ivi and Ivj . To compare the
similarity of the two patches, we train a triplet network [20]
that learns a mapping e(·) from images to a compact 128D
Euclidean space where distances directly correspond to a
measure of image similarity. The dissimilarity of the two
patches is then given by

d
(vi,vj)
C = ‖e(C, Ivi)− e(C, Ivj )‖2, (3)

where e(C, Ivi) denotes the feature embedding provided by
the triplet network for the patch from image Ivi . This mea-
surement can be combined by the relation of the two view-
points vi and vj , which is measured by the angle between
the projection rays of the center voxel of C, which is de-
noted by θ(vi,vj)C . We use a 2-layer fully connected neural
network r(·), that has 100 hidden neurons with sigmoid ac-
tivation function and one linear output neuron followed by
a softmax layer. The relative weights for each view pair are
then given by

w
(vi,vj)
C = r

(
θ
(vi,vj)
C , d

(vi,vj)
C , e(C, Ivi)

T , e(C, Ivj )
T
)
(4)

and the weighted average of the predicted surface probabil-
ities p(vi,vj)x by

px =

∑
(vi,vj)∈VC

w
(vi,vj)
C p

(vi,vj)
x∑

(vi,vj)∈VC
w

(vi,vj)
C

(5)

where Vc denotes the set of selected view pairs. Since it is
unnecessary to take all view pairs into account, we select
onlyNv view pairs, which have the highest weight w(vi,vj)

C .
In Section 7, we evaluate the impact of Nv .

The binarization and thinning are performed as in Sec-
tion 4.3, i.e. a voxel x is converted into a surface voxel if
at least γ = 80% of all views vote for it during ray pooling
and px > τ . The effects of γ and τ are further elaborated in
Section 7.



5.2. Training

The SurfaceNet can be trained together with the averag-
ing of multiple view pairs (5). We select for each cube C,
N train

v random view pairs and the loss is computed after
the averaging of all view pairs. We use N train

v = 6 as a
trade-off since larger values increase the memory for each
sampled cube C and thus require to reduce the batch size
for training due to limited GPU memory. Note that for in-
ference, Nv can be larger or smaller than N train

v .
In order to train the triplet network for the dissimilar-

ity measurement d(vi,vj)
C (3), we sample cubes C and three

random views where the surface is not occluded. The cor-
responding patches obtained by projecting the center of the
cube onto the first two views serve as a positive pair. The
negative patch is obtained by randomly shifting the patch of
the third view by at least a quarter of the patch size. While
the first two views are different, the third view can be the
same as one of the other two views. At the same time, we
use data augmentation by varying illumination or adding
noise, rotation, scale, and translation. After SurfaceNet and
the triplet network are trained, we finally learn the shallow
network r(·) (4).

6. Implementation Details
As described in Section 4.3, the scene volume needs to

be divided into cubes due to limitations of the GPU mem-
ory. However, it is only necessary to process cubes that are
very likely to contain surface voxels. As an approximate
measure, we apply logistic regression to the distance vector
d
(vi,vj)
C (3) for each view pair, which predicts if the patches

of both views are similar. If for less than Nmin of the view
pairs the predicted similarity probability is greater than or
equal to 0.5, we reject the cube.

Instead of using a single threshold τ for binarization,
one can also adapt the threshold for each cube C based
on its neighboring cubes N (C). The approach is iterated
and we initialize τC by 0.5 for each cube C. We optimize
τC ∈ [0.5, 1) by minimizing the energy

E(τC) =
∑

C′∈N (C)

ψ
(
SC(τC), S

C′
(τC′)

)
, (6)

where SC(τC) denotes the estimated surface in cubeC after
binarization with threshold τC .

For the binary term ψ, we use

ψ(SC , SC′
) =

∑
x∈C∩C′

(1− sx)s′x + sx(1− s′x)− βsxs′x.

(7)
The first two terms penalize if SC and SC′

disagree in the
overlapping region, which can be easily achieved by setting
the threshold τ very high such that the overlapping region

contains only very few surface voxels. The last term there-
fore aims to maximize the surface voxels that are shared
among the cubes.

We used the Lasagne Library [6] to implement the net-
work structure. The code and the trained model are publi-
cally available.1

7. Experiments
7.1. Dataset

The DTU multi-view stereo dataset [1] is a large scale
MVS benchmark. It features a variety of objects and ma-
terials, and contains 80 different scenes seen from 49 or
64 camera positions under seven different lighting condi-
tions. The provided reference models are acquired by accu-
rate structured light scans. The large selection of shapes and
materials is well-suited to train and test our method under
realistic conditions and the scenes are complex enough even
for the state-of-the-art methods, such as furu [8], camp [4],
tola [27] and Gipuma [9]. For evaluation, we use three sub-
sets of the objects from the DTU dataset for training, vali-
dation and evaluation. 2

The evaluation is based on accuracy and completeness.
Accuracy is measured as the distance from the inferred
model to the reference model, and the completeness is cal-
culated the other way around. Although both are actually
error measures and a lower value is better, we use the terms
accuracy and completeness as in [1]. Since the reference
models of the DTU dataset are down-sampled to a resolu-
tion of 0.2mm for evaluation, we set the voxel resolution
to 0.4mm. In order to train SurfaceNet with a reasonable
batch size, we use cubes with 323 voxels.

7.2. Impact of Parameters

We first evaluate the impact of the parameters for bina-
rization. In order to provide a quantitative and qualitative
analysis, we use model 9 of the dataset, which was ran-
domly chosen from the test set. By default, we use cubes
with 323 voxels.

As discussed in Section 5.1, the binarization depends on
the threshold τ and the parameter γ for thinning. If γ = 0%
thinning is not performed. Fig. 4 shows the impact of τ
and γ. For each parameter setting, the front view and the
intersection with a horizontal plane (red) is shown from
top view. The top view shows the thickness and consis-
tency of the reconstruction. We observe that τ is a trade-off

1https://github.com/mjiUST/SurfaceNet
2Training: 2, 6, 7, 8, 14, 16, 18, 19, 20, 22, 30, 31, 36, 39, 41, 42, 44,

45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 60, 61, 63, 64, 65, 68, 69, 70, 71, 72,
74, 76, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 115, 116, 119, 120,
121, 122, 123, 124, 125, 126, 127, 128. Validation: 3, 5, 17, 21, 28, 35,
37, 38, 40, 43, 56, 59, 66, 67, 82, 86, 106, 117. Evaluation: 1, 4, 9, 10, 11,
12, 13, 15, 23, 24, 29, 32, 33, 34, 48, 49, 62, 75, 77, 110, 114, 118

https://github.com/mjiUST/SurfaceNet
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Figure 4: Quantitative and qualitative evaluation of τ and γ.

between accuracy and completeness. While a large value
τ = 0.9 discards large parts of the surface, τ = 0.5 results
in a noisy and inaccurate reconstruction. The thinning, i.e.,
γ = 100%, improves the accuracy for any threshold τ and
slightly impacts the completeness.

While the threshold τ = 0.7 seems to provide a good
trade-off between accuracy and completeness, we also eval-
uate the approach described in Section 6 where the constant
threshold τ is replaced by an adaptive threshold τC that is
estimated for each cube by minimizing (6) iteratively. The
energy, however, also provides a trade-off parameter β (7).
If β is large, we prefer completeness and when β is small
we prefer accuracy. This is reflected in Fig. 5 where we
show the impact of β. Fig. 6 shows how the reconstruction
improves for β = 6 with the number of iterations from the
initialization with τC = 0.5. The method quickly converges
after a few iterations. By default, we use β = 6 and 8 itera-
tions for the adaptive binarization approach.

We compare the adaptive binarization with the constant
thresholding in Table 2 where we report mean and median
accuracy and completeness for model 9. The configuration
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Figure 5: Quantitative and qualitative evaluation of β.

(a) initialization (b) iteration 1

(c) iteration 4 (d) iteration 8

Figure 6: The adaptive threshold is estimated by an iterative algo-
rithm. The algorithm converges within a few iterations.

methods (mm)
mean
acc

med
acc

mean
compl

med
compl

τ = 0.7 γ = 0% 0.574 0.284 0.627 0.202
τ = 0.7 γ = 80% 0.448 0.234 0.706 0.242
adaptive threshold
β = 6 γ = 80% 0.434 0.249 0.792 0.229

adaptive threshold
β = 6 γ = 80%

w/o weighted average 0.448 0.251 0.798 0.228

Table 2: A quantitative comparison of two well performing pa-
rameter settings for τ and γ with the adaptive binarization proce-
dure. The last row reports the result when the view pairs are not
weighted. The evaluation is performed for the model 9.

τ = 0.7 and γ = 80% provides a good trade-off between
accuracy and completeness. Using adaptive thresholding
with β = 6 as described in Section 6 achieves a better mean
accuracy but the mean completeness is slightly worse. We



methods (mm)
mean
acc

med
acc

mean
compl

med
compl

camp [4] 0.834 0.335 0.987 0.108
furu [8] 0.504 0.215 1.288 0.246
tola [27] 0.318 0.190 1.533 0.268

Gipuma [9] 0.268 0.184 1.402 0.165
s = 32, τ = 0.7, γ = 0% 1.327 0.259 1.346 0.145
s = 32, τ = 0.7, γ = 80% 0.779 0.204 1.407 0.172
s = 32, adapt β = 6, γ = 80% 0.546 0.209 1.944 0.167
s = 64, τ = 0.7, γ = 0% 0.625 0.219 1.293 0.141
s = 64, τ = 0.7, γ = 80% 0.454 0.191 1.354 0.164
s = 64, adapt β = 6, γ = 80% 0.307 0.183 2.650 0.342

Table 3: Comparison with other methods. The results are reported
for the test set consisting of 22 models.

also report in the last row the result when the probabilities
px are not weighted in (5), i.e., w(vi,vj)

C = 1. This slightly
deteriorates the accuracy.

1 3 5 6
0

1

2

3

4

0

0.2

0.4

0.6

0.8

 

mean acc

med acc

mean compl

med compl

Nv

ac
cu

ra
cy

co
m

pl
et

en
es

s

Nv = 1 Nv = 3

Nv = 5 Nv = 6

Figure 7: Quantitative and qualitative evaluation of Nv .

We finally evaluate the impact of fusing the probabili-
ties px of the best Nv view pairs in (5). By default, we
used Nv = 5 so far. The impact of Nv is shown in Fig. 7.
While taking only the best view pair results in a very noisy
inaccurate reconstruction, the accuracy is substantially im-
proved for three view pairs. After five view pairs the accu-
racy slightly improves at the cost of a slight deterioration of
the completeness. We therefore keep Nv = 5.

7.3. Comparison with others methods

We finally evaluate our approach on the test set consist-
ing of 22 models and compare it with the methods camp [4],
furu [8], tola [27], and Gipuma [9]. While we previously
used cubes with 323 voxels, we also include the results for
cubes with 643 voxels in Table 3. Using larger cubes, i.e.

s = 64, improves accuracy and completeness using a con-
stant threshold τ = 0.7 with γ = 0% or γ = 80%. When
adaptive thresholding is used, the accuracy is also improved
but the completeness deteriorates.

If we compare our approach using the setting s = 64,
τ = 0.7, and γ = 80% with the other methods, we observe
that our approach achieves a better accuracy than camp [4]
and furu [8] and a better completeness than tola [27] and
Gipuma [9]. Overall, the reconstruction quality is compara-
ble to the other methods. A qualitative comparison is shown
in Fig. 8.

7.4. Runtime

The training process takes about 5 days using an Nvidia
Titan X GPU. The inference is linear in the number of cubes
and view pairs. For one view pair and a cube with 323 vox-
els, inference takes 50ms. If the cube size is increased to
643 voxels, the runtime increases to 400ms. However, the
larger the cubes are the less cubes need to be processed. In
case of s = 32, model 9 is divided into 375k cubes, but most
of them are rejected as described in Section 6 and only 95k
cubes are processed. In case of s = 64, model 9 is divided
into 48k cubes and only 12k cubes are processed.

7.5. Generalization

methods (mm)
mean
acc

med
acc

mean
compl

med
compl

49 views
s = 32, adapt β = 6, γ = 80% 0.197 0.149 1.762 0.237
s = 64, τ = 0.7, γ = 80% 0.256 0.122 0.756 0.193

15 views
s = 32, adapt β = 6, γ = 80% 0.191 0.135 2.517 0.387
s = 64, τ = 0.7, γ = 80% 0.339 0.117 0.971 0.229

Table 4: Impact of the camera setting. The first two rows show
the results for the 49 camera views, which are the same as in the
training set. The last two rows show the results for 15 different
camera views that are not part of the training set. The evaluation
is performed for the three models 110, 114, and 118.

In order to demonstrate the generalization abilities of the
model, we apply it to a camera setting that is not part of the
training set and an object from another dataset.

The DTU dataset [1] provides for some models addi-
tional 15 views which have a larger distance to the object.
For training, we only use the 49 views, which are available
for all objects, but for testing we compare the results if the
approach is applied to the same 49 views used for training
or to the 15 views that have not been used for training. In
our test set, the additional 15 views are available for the
models 110, 114, and 118. The results in Table 4 show that
the method performs very well even if the camera setting
for training and testing differs. While the accuracy remains
relatively stable, an increase of the completeness error is
expected due to the reduced number of camera views.



a: reference model b: SurfaceNet c: camp [4] d: furu [8] e: tola [27] f: Gipuma [9]

Figure 8: Qualitative comparison to the reference model from the DTU dataset [1] and the reconstructions obtained by [4, 8, 27, 9]. The
rows show the models 9, 10, 11 from the DTU dataset [1].

(a)

(b)

(c)

Figure 9: (a) Reconstruction using only 6 images of the di-
noSparseRing model in the Middlebury dataset [21]. (b) One of
the 6 images. (c) Top view of the reconstructed surface along the
red line in (a).

We also applied our model to an object of the Middle-
bury MVS dataset [21]. We use 6 input images from the
view ring of the model dinoSparseRing for reconstruction.
The reconstruction is shown in Fig. 9.

8. Conclusion

In this work, we have presented the first end-to-end
learning framework for multiview stereopsis. To efficiently
encode the camera parameters, we have also introduced a
novel representation for each available viewpoint. The so-
called colored voxel cubes combine the image and camera
information and can be processed by standard 3D convolu-
tions. Our qualitative and quantitative evaluation on a large-
scale MVS benchmark demonstrated that our network can

accurately reconstruct the surface of 3D objects. While our
method is currently comparable to the state-of-the-art, the
accuracy can be further improved by more advanced post-
processing methods. We think that the proposed network
can also be used for a variety of other 3D applications.
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