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Abstract. Distinguishing if an action is performed as intended or if an
intended action fails is an important skill that not only humans have,
but that is also important for intelligent systems that operate in human
environments. Recognizing if an action is unintentional or anticipating if
an action will fail, however, is not straight-forward due to lack of anno-
tated data. While videos of unintentional or failed actions can be found
in the Internet in abundance, high annotation costs are a major bottle-
neck for learning networks for these tasks. In this work, we thus study
the problem of self-supervised representation learning for unintentional
action prediction. While previous works learn the representation based
on a local temporal neighborhood, we show that the global context of a
video is needed to learn a good representation for the three downstream
tasks: unintentional action classification, localization and anticipation.
In the supplementary material, we show that the learned representation
can be used for detecting anomalies in videos as well.

Keywords: Unsupervised Representation Learning, Contrastive Learn-
ing, Unintentional Action Prediction, Anomaly Detection

1 Introduction

Recognition of human intentions is a task that we perform easily on a daily ba-
sis. We can tell the difference between the deliberately and accidentally dropped
object; between the liquid poured with intent or spilled out of carelessness. More-
over, we can easily identify the point at which a certain action turns from being
intentional to an unintentional one. Our ability to do so signifies the impor-
tance of this skill in the day to day life since the intent of a particular event
dictates our reaction to it. Therefore, if intelligent agents are to exist among
human beings, they should possess the skill to differentiate between intentional
and unintentional actions.

While there are large amounts of videos, which contain unintentional ac-
tions, freely available on various video platforms, they are not annotated. Since
the videos contain an action that becomes unintentional over time, it would be
very time-consuming to annotate the transition between an intentional and un-
intentional action in each video. To mitigate the effort required for annotation,
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Fig. 1. Example of an unintentional action video. Unlike typical videos that are used
for action recognition where the labels are fixed throughout the video, the clips labels in
unintentional videos change over time. In this example, the skater intentionally jumps
at the beginning of the video, but suddenly loses balance and falls down at the end.
While all clips are visually similar, we can see the intent degree of the clips changing
as the video progresses.

Epstein et al. [9] proposed to consider unintentional action prediction from the
unsupervised learning perspective. They collected a dataset of fail videos (Oops
dataset [9]) from Youtube and proposed three methods for learning unintentional
video features in a self-supervised way: Video Speed, Video Sorting and Video
Context. Video Speed learns features by predicting the speed of videos sampled
at 4 different frame rates. Video Sorting learns representations by predicting
permutations of 3 clips sampled with a 0.5 second gap. Finally, Video Context
relies on contrastive predictive coding to predict the feature of a clip based on
its two neighboring clips. Among the proposed models, the Video Speed baseline
showed the best results on the considered downstream tasks.

We notice, however, that the proposed methods do not leverage all infor-
mation present in the unlabeled videos of unintentional actions. Firstly, they
pay very limited attention to the distinctiveness of features along the temporal
axis of the video. For instance, the Video Speed model operates on a temporal
context of around one second. For the other two proposed models, the observed
local temporal neighborhood is larger, but still limited - three clips of one sec-
ond are sampled within 0.5 seconds from each other. However, since videos of
unintentional actions consist of clips whose labels change throughout the video,
the mere distinction of local changes in appearance is insufficient for determin-
ing how intentional the portrayed action is. For example in Figure 1, we can see
that all clips look very much alike, however, as the video progresses, the action of
the skater turns from intentional to unintentional. This is barely recognizable by
looking only at neighboring clips, but the global context of the video reveals that
the action does not progress as expected. Secondly, we notice that information
contained in the order of sampled clips has not been harnessed to the full extent
since the previously proposed Video Sorting model performed only slightly bet-
ter than the model initialized from scratch. Such relatively low performance, as
we show in our experiments, was caused by the specifics of the chosen pre-text
task formulation, and not by the lack of information in the clip order.

In this work, we address the above-mentioned limitations of [9]. First, we
show that a local neighborhood is insufficient and we propose to sample the
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clips globally for the entire video. This is required to differentiate between local
variations of an intentional action and variations between an intentional and un-
intentional action. Second, we revisit the poor performance of the Video Sorting
approach. While a global sampling improves the learned representation of Video
Sorting as well, the permutation-based approach of Video Sorting still strug-
gles in the global setting to distinguish intentional from unintentional actions.
We thus propose a pair-wise ordering loss where the features of two randomly
sampled clips are concatenated and the network needs to predict which clip oc-
curs first in the video. We demonstrate in the experiments that this loss learns
a better representation than the permutation loss where the correct order of
three clips needs to be predicted. Finally, we aim to learn a representation that
works well for different downstream tasks, namely classification, localization and
anticipation of unintentional actions. To this end, we combine a global tempo-
ral contrastive loss with a pair-wise video clip order prediction task. We show
that our proposed approach outperforms all previously proposed self-supervised
models for unintentional action prediction and achieves state-of-the-art results
on two datasets of unintentional actions: the Oops dataset [9] and LAD2000 [32].

2 Related Work

2.1 Self-Supervised Learning for Action Recognition

Self-supervised approaches for video representation learning, as noted by [7],
can be generally subdivided into three types: pre-text task-based, contrastive
learning-based, and combinations of the two.

Video Pretext Task Learning. The main idea behind pretext task-based
learning is to utilize intrinsic properties of video data that do not require manual
annotations for video representation learning. For example, video speed [4,6,39]
is a commonly used cue for the pretext task formulation. These methods create
several versions of the same video with different perceptual speeds by varying
their sampling rate and then train the model to recognize the playback speed of
the resulting clips. Benaim et al. [4] formulate this as a binary classification task
(normal/sped-up), while other works [6, 39] harness several different sampling
rates for multi-class classification. In addition to speed, Cho et al. [6] predict the
Arrow of Time (AoT) in videos, which was earlier proposed by [34]. Recognition
of AoT is closely related to another commonly used pre-text task: video order
classification [12,23,24,36]. Formulations of this task vary. For instance, Misra et
al. [24] predict whether a sequence of frames is in the natural or shuffled order.
Lee et al. [23], on the other hand, predict frame permutations. Xu et al. [36],
like [23], predict permutations, but instead of frames they operate on clips. Yet
another approach [12] proposes to recognize a naturally ordered sequence among
the shuffled ones. Other pre-text tasks include, but are not limited to, solving
spatio-temporal jigsaw puzzles [1,21], prediction of video rotations [19] and col-
orization of videos [31].

Video Contrastive Learning. In recent years, contrastive learning has be-
come popular for self-supervised learning both for image and video domains. Its
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initial success in the image domain [5, 16] has promoted the emergence of con-
trastive learning-based methods for video data [3,7,8,17,26,27]. These methods
differ in how they sample positive and negative examples for the training pro-
cedure, as well as in the type of the used backbone network (2D or 3D CNN).
For many video-based contrastive learning approaches [7, 26, 27], the de facto
procedure of constructing examples is by considering clips from the same video
as positives and clips from different videos as negatives. However, enforcing ab-
solute temporal invariance is not beneficial for the resulting features. Therefore,
Sermanet et al. [27] proposed time contrastive learning, where close frames are
considered as positive examples and frames from different parts of the same
video as negatives. Qian et al. [26] followed this principle and proposed an ex-
tension such that positive examples are sampled from the same video, with the
gap between sampled clips drawn randomly from a monotonically decreasing
distribution. Dave et al. [7] proposed to train a network with a combination of
three loss terms for ensuring different levels of temporal discrimination: instance
discrimination, local-local and global-local loss.

Combined Learning. Some approaches rely on the combination of pre-text
task-based and contrastive-based learning. Different methods propose to com-
bine contrastive learning with: speed prediction [33], order prediction [38], or
frame rotation prediction [22]. Other methods combine several pre-text tasks
simultaneously [2, 18]. Our proposed approach also makes use of the multi-task
learning strategy: we combine temporal contrastive learning with order predic-
tion. However, in contrast to all previous methods that learn representations for
action recognition, we learn representations for unintentional action prediction.

2.2 Self-Supervised Learning for Unintentional Action Recognition

The task of self-supervised learning for unintentional action prediction has been
proposed recently by Epstein et al. [9]. Previous works on unintentional action
prediction or anomaly detection [11, 14, 28–30, 35, 40] do not address represen-
tation learning, but focus on predictions based on features pre-extracted from
pre-trained networks. Epstein et al. [9, 10] instead proposed to learn features
specifically for the tasks related to unintentional action prediction. For the un-
supervised learning setting, Epstein et al. [9] proposed three baselines: Video
Speed, Video Sorting and Video Context. In the further work, Epstein et al. [10]
have also considered fully-supervised learning, for which they combined learning
on labeled examples using the standard cross-entropy loss with solving an un-
supervised temporal consistency task. Two further works [37, 41] addressed the
fully-supervised setting for the Oops dataset. While Zhou et al. [41] proposed
to model the label distribution to mine reliable annotations for training, Xu et
al. [37] proposed a causal inference approach, for which they gathered additional
videos with only intentional actions. In this work, we address the challenge of
self-supervised representation learning for unintentional action prediction, as de-
fined in [9].
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3 Method

We propose to learn representations from videos of unintentional actions using a
global temporal contrastive loss and an order prediction loss. In this section, we
describe the proposed method in detail. We start by formally defining the task of
representation learning for unintentional action prediction in Section 3.1. Then,
we discuss our temporal contrastive loss in Section 3.2 and the order prediction
loss in Section 3.3.

3.1 Representation Learning for Unintentionality Detection

In this work, we deal with unsupervised video representation learning for unin-
tentional action prediction as proposed by [9]. Given a set of V unlabeled videos
(v1, . . . , vV ) of unintentional actions, partitioned into ni short clips {xt

i}
ni
t=1, the

goal is to learn a function f t
i = ϕ(xt

i) that maps a short clip xt
i into a fea-

ture vector f t
i in an unsupervised way, such that the resulting features transfer

well to downstream tasks related to unintentionality detection. Epstein et al. [9]
proposed three such tasks: unintentional action classification, localization and
anticipation. The task of classification is to predict labels of individual video
clips. The task of localization is to detect a point of transition from an inten-
tional to an unintentional action. Finally, the task of anticipation is to predict
the label of a clip located 1.5 seconds into the future. We describe these tasks
in more detail in Section 4.3. For evaluating the learned features on the above
mentioned tasks, a small subset of annotated data is provided with labels de-
fined as follows. Initially, each video is annotated with a transitional time point
tai at which an action changes from intentional to unintentional. Based on the
annotated transitional point tai , clips are assigned to one of three classes: inten-
tional, transitional and unintentional. Clip xt

i is intentional, if it ends before the
transitional point tai ; x

t
i is transitional, if it starts before tai and ends after it.

Otherwise, xt
i is unintentional. An example of a video label annotation is shown

in Figure 1.

3.2 Temporal Contrastive Loss

As it is motivated in Figure 1, we aim to learn a representation that is similar for
any clip that contains the same intentional action, but that allows to differentiate
if the same action is intentional or unintentional. Since we do not have any
labels, we do not know when an action in a video is intentional or unintentional.
However, we can assume that sampled neighboring clips are much more likely to
have the same label (intentional or unintentional) whereas clips sampled more
distant are more likely to have different labels, see Figure 2. We thus make use of
the InfoNCE [13] loss function, that encourages representations of two positive
views to be closer to each other in the embedding space, while pushing them
away from the features of the negative examples. Formally, it is expressed as
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Fig. 2. We train our model with a combination of a temporal contrastive loss and an
order prediction loss. For each video vi in the batch of size K, we at first randomly
sample an anchor clip p1i from time step ti. Then, we draw randomly one positive exam-
ple p2i from its immediate neighbors and one negative example ni from the remaining
video clips. Using a backbone 3D-CNN network and a non-linear projection head g,
we extract features {f1

i , f
2
i , fi}Ki=1 and their non-linear projections {z1i , z2i , zi}Ki=1 from

the sampled clips. We use the {z1i , z2i , zi}Ki=1 to compute a temporal contrastive loss
(middle row), where positive examples are drawn closer to each other (green arrows)
and are pushed away from the negatives (red arrows). Additionally, randomly-ordered
pair-wise concatenations of features coming from the same videos {f1

i , f
2
i , fi}Ki=1 are

used to compute an order prediction loss with a non-linear order prediction head h
(bottom row).

follows:

LNCE(x, y,N) = − log
q(g(x), g(y))

q(g(x), g(y)) +
∑

n∈N q(g(x), g(n))
, (1)

where x, y are positive examples, g is a non-linear projection layer, q(x, y) =
exp( x·y

||x||||y||/τ) measures the similarity between samples, which depends on the

hyper-parameter τ , and N is the set of negative examples. For computing the
temporal contrastive loss, we obtain positive and negative clips using the fol-
lowing sampling procedure: we sample positive examples from the immediate
temporal neighborhood of a given clip while negative examples are sampled from
the remaining video regions. More specifically, for a clip xt

i from a time point
t of video vi, we consider its immediate adjacent clips {xt−1

i , xt+1
i } as potential

positive examples, whereas clips from the outside regions form a set of poten-
tial negative examples, i.e. {x1

i , . . . , x
t−3
i }∪{xt+3

i , . . . , xni
i }. Following [27], clips

{xt−2
i , xt+2

i } form a margin zone, from which no negative examples are allowed
to be sampled. Given a mini-batch of K videos (v1, . . . , vK), for each video vi we
randomly sample two positive and one negative examples from the set of posi-
tives and negatives accordingly. In this way, for each vi we get a triplet of clips
{p1i , p2i , ni}Ki=1, where p

1
i , p

2
i is a positive pair and ni is a negative example. Then,

our proposed temporal contrastive loss is formulated as a symmetric InfoNCE
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loss in the following manner:

Ltemp =
1

2K

K∑
i=1

(LNCE(p
1
i , p

2
i , N) + LNCE(p

2
i , p

1
i , N)), (2)

where N = {ni}Ki=1 is the set of all negatives, which is common for all positive
pairs. Intuitively, this loss encourages that adjacent clips are close to each other
in the embedding space and far apart from the remaining clips. Since we do not
restrict the extent of the potential negative regions to a local neighborhood, this
loss encourages discrimination between the clips on both fine-grained and more
coarse levels.

3.3 Order Loss

While the temporal contrastive loss ensures that neighboring clips are close in
the embedding space, it does not ensure that the relative order of the clips gets
encoded in the feature vectors. However, as indicated by our experiments, order
reasoning is key for improving both the classification and the localization of the
unintentional moments. We therefore perform order prediction for each triplet
of clips, which are sampled as described in the previous section and illustrated
in Figure 2. To this end, we do pairwise concatenation of clip features that
come from the same videos. For each pair, we randomly select the order in
which the representations are concatenated. This results in three concatenated
feature vectors for each triplet, i.e. m = 3K pairs. Using these pairs, we train
a non-linear order prediction layer for recognizing whether representations of
the two corresponding clips are concatenated in the correct or reversed order.
Formally, for two clips xt1

i , xt2
i sampled from video vi at time steps t1 and t2,

features f t1
i = ϕ(xt1

i ) and f t2
i = ϕ(xt2

i ) are concatenated into a single vector
f t1t2
i = cat(f t1

i , f t2
i ) and fed through a non-linear layer h that outputs an order

prediction vector ŷi = h(f t1t2
li

). The order loss is formulated as the binary cross-
entropy loss between predicted labels ŷi and the correct labels yi:

yi =

{
1, if t1 < t2

0, otherwise.
(3)

Therefore, the final order loss has the following form:

Lord = − 1

m

m∑
i=1

(yilog(ŷi) + (1− yi)log(1− ŷi)). (4)

For training the network, we sum the temporal contrastive loss (2) and the order
loss (4), giving them equal weight:

L = Ltemp + Lord. (5)
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4 Experiments

4.1 Implementation Details

We implemented our approach using the Pytorch [25] framework. Both for the
pre-training stage and downstream tasks, we follow the settings proposed by
Epstein et al. [9] as close as possible for a fair comparison with the previous
methods. As a backbone network, we use a randomly initialized ResNet3D-18
[15], which receives as input clips of 16 frames from videos sampled at 16 fps, so
that one clip contains one second of temporal context. For the downstream tasks,
the pre-trained backbone network is used as a feature extractor and a linear layer
is added for the specific task. Depending on the task, the backbone network either
remains fixed (linear classification and localization) or is finetuned (classification
with fine-tuning and anticipation). We provide further implementation details
in the supplementary material.

4.2 Datasets

We conducted our experiments on two datasets with unintentional or anoma-
lous videos: Oops [9] and LAD2000 [32]. We present the results on the LAD2000
dataset in the supplementary material. The Oops dataset consists of fail com-
pilation videos from YouTube that have been automatically cut. In total, it has
20723 videos, 16012 train and 4711 test videos, varying from 3 to 30 seconds.
Most videos are unlabeled. For evaluating the learned representation on down-
streams tasks, the authors provide labeled subsets of the original videos: 6065
training and 4711 test videos. Labeled videos are annotated with a time-step
at which the transition from an intentional to an unintentional action happens.
We further notice that a substantial number of videos in both splits contain
several unrelated scenes due to failures of the automatic video cutting. Since our
approach is reliant on the temporal coherency of the video data, we do not use
such videos during the self-supervised pre-training stage. We therefore perform
an automatic detection of videos containing such defects by training a separate
model for cut recognition. We provide details about the cut detection network
in the supplementary material. We emphasize that this model is trained without
manual annotations. For the downstream tasks, we use all videos regardless of
their quality for a fair comparison with previous methods. For the sake of com-
pleteness, we also include in the supplementary material results of our approach
when pre-training is performed on all videos.

4.3 Results

In this section, we evaluate the proposed self-supervised learning approach for the
different unintentional action recognition tasks. On the Oops dataset, we report
the results on the three tasks proposed by [9]: classification, localization and
anticipation. We adopt the protocol of [9] and compare our method with other
self-supervised approaches, as well as to a network pre-trained on Kinetics [20]
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Representation Linear Classifier Finetune

% of Labeled Videos 10% 100% 100%

Kinetics 52.0 53.6 64.0

Video Speed [9] 49.9 53.4 61.6
Video Context [9] 47.2 50.0 60.3
Video Sorting [9] 46.5 49.8 60.2

Scratch [9] 46.2 48.2 59.4

Ours 59.2 60.9 61.9
Table 1. Classification accuracy on the Oops dataset.

with action labels as supervision. Additional comparisons to fully-supervised
methods are provided in the supplementary material.

Classification. The task of classification is to categorize individual one-
second-long clips {xt

i}
ni,
t=1,

n
i=1 extracted from longer videos containing both in-

tentional and unintentional actions into three categories: intentional, transitional
and unintentional. The clips are uniformly sampled across the videos with incre-
ments of 0.25 seconds. To evaluate the proposed self-supervised approach on this
task, we fit a linear classifier on top of the features extracted from the backbone
pre-trained in a self-supervised way. Following [9], we evaluate the performance
of our method for three classification settings. In the first setting (Linear Classi-
fier, 100%), the backbone network remains fixed and only a linear classification
layer is trained on the labeled videos. The second setting (Linear Classifier,
10%) differs from the first one in that only 10% of the labeled videos are used
during training. And finally, in the third setting (Finetune, 100%), the back-
bone network is finetuned together with the linear layer using all labeled videos.
During training, we resample the clips such that the number of clips belonging
to the different classes are balanced.

We present the classification results of our approach on the Oops dataset
in Table 1. All models pre-trained with self-supervision outperform the model
trained from scratch for all considered classification settings, which shows the
benefit of the self-supervised pre-training. For the setting, where only the lin-
ear layer is trained, our approach outperforms by a large margin all previously
proposed self-supervised approaches, as well as the model pre-trained on Ki-
netics with full supervision. When only 10% of the labeled videos are used for
training, our method improves by 9.3% and 7.2% compared to the current state-
of-the-art self-supervised approach Video Speed and the representation learned
fully-supervised on Kinetics. When all labeled videos are used, the improvement
is 7.5% and 7.3% compared to self-supervised pre-training and pre-training on
Kinetics, respectively. For the fine-tuning case, our model performs on par with
the Video Speed [9] model. We notice that during the fine-tuning stage almost
all self-supervised models perform similarly.

Localization. The task of localization is to detect the point of transition ta,
where the action depicted in the video turns from being intentional to uninten-
tional. To this end, we follow the localization setting proposed by [9]. Namely, we
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Representation Accuracy within

Linear 1 sec 0.25 sec

Kinetics 69.2 37.8

Video Speed [9] 65.3 36.6
Video Context [9] 52.0 25.3
Video Sorting [9] 43.3 18.3

Scratch [9] 47.8 21.6

Ours 70.5 41.3
Table 2. Temporal localization accuracy on the Oops dataset.

use our previously trained linear classifier in a sliding window fashion to estimate
the probability of the transitional class for the individual clips of each video. Af-
ter that, the clip with the highest transitional probability score is considered as
the predicted boundary and its center is considered as the predicted transition
point ta. This predicted point is deemed to be correct if it has sufficient overlap
with the ground-truth transition point. For evaluation, two thresholds for such
overlaps are considered: one-quarter second and one second.

Table 2 reports evaluation results for the task of transitional point localiza-
tion. For both considered thresholds our approach outperforms by a substantial
margin not only all previously proposed self-supervised methods and the model
trained from scratch, but also the model pre-trained in a fully-supervised way
on the Kinetics dataset. Compared to the best-performing self-supervised Video
Speed model [9], our approach is 5.2% and 4.7% better for one and one-quarter
second thresholds, respectively. Whereas for the Kinetics pre-trained model, our
method is better by 1.3% and 3.5% for the corresponding thresholds.

Anticipation. The task of anticipation is to predict labels of individual
clips 1.5 seconds into the future. As in [9], the task of anticipation is formulated
similar to that of the classification with the backbone fine-tuning. However, for
this task not all clips can be considered and clip labels are assigned differently.
More specifically, for anticipation we can consider only those clips for which
there exists a subsequent clip located 1.5 seconds ahead of it. Labels of those
future clips are the ones that need to be predicted based on the current clips.
We report the anticipation accuracy in Table 3. In our experiments, we could
not reproduce the results reported in [9] for this task, which are shown in the
left column (Reported). Thus, we re-evaluated the self-supervised Video Speed

Representation Accuracy

Reported Reproduced

Kinetics 59.7 67.6

Video Speed [9] 56.7 61.5

Ours - 62.4
Table 3. Anticipation accuracy on the Oops dataset.
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Linear classifier

Localization Classification

Loss 1 sec 0.25 sec All labels

Ltemp 65.7 37.1 52.3

Lord 66.2 36.0 60.0

Ltemp + Lord 70.5 41.3 60.9
Table 4. Impact of the loss components on the Oops dataset.

model [9] using the publicly available weights and the model pre-trained on
Kinetics (Reproduced). Our method outperforms the previously proposed self-
supervised approach Video Speed by 0.9%.

4.4 Ablation study

In this section, we present a set of ablation experiments to study the impact
of the different aspects of our approach. Firstly, we provide an analysis of the
individual components of our proposed loss. Secondly, we study the impact of
the temporal extent and the order loss formulation on the quality of the learned
representations and thereby uncover the limitations of the previously proposed
approaches. All ablation studies are performed on the Oops dataset on both the
classification and localization tasks by training a linear classifier on top of the
learned representations.

Effect of Loss Components. The loss function for our model consists of
two components: temporal contrastive loss and order prediction loss. To analyze
the impact of the individual loss terms, we train two separate models: one with
temporal contrastive loss (Ltemp), and another one with order prediction loss
(Lord). The results for these models are shown in Table 4. We can observe for
both downstream tasks that using both loss terms substantially outperforms the
models trained with only one of the two loss terms. This supports our hypothesis
that temporal cues and relative order information are complementary and both
are crucial for recognizing the intentionality of human actions. We can further see
that while order-based and contrastive-based models show similar performance
for localization, the order-based approach achieves significantly better results on
the task of classification.

Effect of Loss Formulation. For computing the temporal contrastive loss
and the order prediction loss, we sample three clips per video: two positives
and one negative. To analyze the impact of the temporal variety of the sam-
ples on the quality of the resulting features, we perform a set of experiments.
Namely, we train the models with the corresponding loss terms but we change
the temporal scope from which the negative clips are sampled. We refer to
the original sampling setting as Global, while Local denotes that the sampling
scope has been limited. For Local, potential negative examples are confined to
clips that are at least 3 and at most 5 steps away from the anchor clip xt

i,
i.e. {xt−5

i , . . . , xt−3
i }∪{xt+3

i , . . . , xt+5
i }. In addition to this, we also analyze how
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Linear classifier

Localization Classification

Loss 1 sec 0.25 sec All labels

Temp. ext. Loss Type

Temporal Contrastive (Ltemp)

Global - 65.7 37.1 52.3

Local - 64.1 35.5 50.1

Order (Lord)

Global Pair Order 66.2 36.0 60.0

Local Pair Order 66.6 36.9 57.4

Global Permutation 59.7 32.1 47.2

Local Permutation 46.5 20.1 46.6

Temporal Contrastive + Order (Ltemp + Lord)

Global Pair Order 70.5 41.3 60.9

Local Pair Order 70.7 40.8 57.2
Table 5. Impact of the loss formulation on the Oops dataset.

the formulation of the order prediction task affects the resulting features. More
precisely, we experiment with the formulation proposed by Epstein et al. [9].
That is, instead of predicting the pairwise order of clips (Pair Order), we pre-
dict their random permutation (Permutation).

Table 5 shows the experimental results. Firstly, we observe that limiting
the temporal variety of the considered examples generally leads to a weaker
performance on the downstream tasks. This confirms our hypothesis that both
long-range and short-range temporal discrimination are crucial for recognizing
the degree of intent in a video. Therefore loss functions should not be confined
to local neighborhoods. Secondly, we can see that models trained for permuta-
tion prediction show significantly lower results than those trained with pair-wise
order prediction, especially when only clips from the confined local neighbor-
hood are considered, which is a setting similar to what is proposed by Epstein et
al. [9]. This shows that our formulation of order prediction is better suited to
learn representations for unintentional action prediction, since it harnesses the
information available in the relative clip order more efficiently.

5 Discussion

In this work, we have presented a self-supervised approach for the task of unin-
tentional action prediction. To address the shortcomings of the previously pro-
posed approaches, we proposed to train a feature extraction network using a
two-component loss, consisting of a temporal contrastive loss and an order pre-
diction loss. While the temporal contrastive loss is responsible for making rep-
resentations distinct, the prediction of the clip order allows to learn the relative
positioning. We evaluated our approach on one video dataset with unintentional
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actions and we provided additional results for anomaly detection in the supple-
mentary material. While our work shows a large improvement over the previously
proposed methods, we recognize that the current evaluation setting has a number
of limitations. More specifically, the Oops dataset that we used for pre-training
our model consists only of videos that have been collected from fail compilation
videos. These videos are biased towards very specific actions and scenes, and
the temporal location of unintentional actions is biased as well. While we show
in the supplementary material that learning representations on such videos can
be beneficial for anomaly detection as well, it needs to be investigated in future
work how well the proposed approaches perform on videos with a more general
definition of unintentional actions.

Acknowledgments. The work has been funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – SFB 1502/1–2022 - Projek-
tnummer: 450058266 and GA 1927/4-2 (FOR 2535 Anticipating Human Behav-
ior).

References

1. Ahsan, U., Madhok, R., Essa, I.: Video jigsaw: Unsupervised learning of spatiotem-
poral context for video action recognition. In: Proceedings of the IEEE Winter
Conference on Applications of Computer Vision (WACV) (2019)

2. Bai, Y., Fan, H., Misra, I., Venkatesh, G., Lu, Y., Zhou, Y., Yu, Q., Chandra,
V., Yuille, A.L.: Can temporal information help with contrastive self-supervised
learning? ArXiv abs/2011.13046 (2020)

3. Behrmann, N., Fayyaz, M., Gall, J., Noroozi, M.: Long short view feature de-
composition via contrastive video representation learning. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

4. Benaim, S., Ephrat, A., Lang, O., Mosseri, I., Freeman, W.T., Rubinstein, M.,
Irani, M., Dekel, T.: Speednet: Learning the speediness in videos. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2020)

5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for con-
trastive learning of visual representations. ArXiv abs/2002.05709 (2020)

6. Cho, H., Kim, T., Chang, H.J., Hwang, W.: Self-supervised visual learning by
variable playback speeds prediction of a video. IEEE Access (2021)

7. Dave, I.R., Gupta, R., Rizve, M.N., Shah, M.: Tclr: Temporal contrastive learning
for video representation. ArXiv abs/2101.07974 (2021)

8. Diba, A., Sharma, V., Safdari, R., Lotfi, D., Sarfraz, S., Stiefelhagen, R., Van Gool,
L.: Vi2clr: Video and image for visual contrastive learning of representation.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV) (2021)

9. Epstein, D., Chen, B., Vondrick, C.: Oops! predicting unintentional action in video.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2020)

10. Epstein, D., Vondrick, C.: Learning goals from failure. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2021)



14 Zatsarynna et al.

11. Feng, J.C., Hong, F.T., Zheng, W.S.: Mist: Multiple instance self-training frame-
work for video anomaly detection. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2021)

12. Fernando, B., Bilen, H., Gavves, E., Gould, S.: Self-supervised video representation
learning with odd-one-out networks. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2017)

13. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: A new estimation prin-
ciple for unnormalized statistical models. In: Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics (2010)

14. Hanson, A., Pnvr, K., Krishnagopal, S., Davis, L.S.: Bidirectional convolutional
lstm for the detection of violence in videos. In: European Conference on Computer
Vision (ECCV) Workshop (2018)

15. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3d cnns retrace the history of
2d cnns and imagenet? In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2018)

16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsuper-
vised visual representation learning. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2020)

17. Hoffmann, D., Behrmann, N., Gall, J., Brox, T., Noroozi, M.: Ranking info noise
contrastive estimation: Boosting contrastive learning via ranked positives. In:
AAAI Conference on Artificial Intelligence (2022)

18. Jenni, S., Jin, H.: Time-equivariant contrastive video representation learning.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV) (2021)

19. Jing, L., Yang, X., Liu, J., Tian, Y.: Self-supervised spatiotemporal feature learning
via video rotation prediction. ArXiv abs/811.11387 (2018)

20. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan,
S., Viola, F., Green, T., Back, T., Natsev, A., Suleyman, M., Zisserman, A.: The
kinetics human action video dataset. ArXiv abs/1705.06950 (2017)

21. Kim, D., Cho, D., Kweon, I.S.: Self-supervised video representation learning with
space-time cubic puzzles. In: AAAI Conference on Artifical Inelligence (2019)

22. Knights, J., Harwood, B., Ward, D., Vanderkop, A., Mackenzie-Ross, O.,
Moghadam, P.: Temporally coherent embeddings for self-supervised video repre-
sentation learning. In: International Conference on Pattern Recognition (ICPR)
(2020)

23. Lee, H.Y., Huang, J.B., Singh, M.K., Yang, M.H.: Unsupervised representation
learning by sorting sequence. In: Proceedings of the IEEE International Conference
on Computer Vision (ICCV) (2017)

24. Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: Unsupervised learning us-
ing temporal order verification. In: Proceedings of the European Conference on
Computer (ECCV) (2016)

25. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Advances
in Neural Information Processing Systems 32 (2019)

26. Qian, R., Meng, T., Gong, B., Yang, M.H., Wang, H., Belongie, S.J., Cui, Y.:
Spatiotemporal contrastive video representation learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2021)



Self-supervised Learning for Unintentional Action Prediction 15

27. Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., Levine, S.:
Time-contrastive networks: Self-supervised learning from video. Proceedings of In-
ternational Conference in Robotics and Automation (ICRA) (2018)

28. Sudhakaran, S., Lanz, O.: Learning to detect violent videos using convolutional
long short-term memory. In: IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS) (2017)

29. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance
videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2018)

30. Tian, Y., Pang, G., Chen, Y., Singh, R., Verjans, J.W., Carneiro, G.: Weakly-
supervised video anomaly detection with robust temporal feature magnitude learn-
ing. In: Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV) (2021)

31. Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., Murphy, K.P.: Track-
ing emerges by colorizing videos. In: Proceedings of the European Conference on
Computer Vision (ECCV) (2018)

32. Wan, B., Jiang, W., Fang, Y., Luo, Z., Ding, G.: Anomaly detection in video
sequences: A benchmark and computational model. IET Image Processing (2021)

33. Wang, J., Jiao, J., Liu, Y.: Self-supervised video representation learning by pace
prediction. In: Proceedings of the European Conference on Computer Vision
(ECCV) (2020)

34. Wei, D., Lim, J., Zisserman, A., Freeman, W.T.: Learning and using the arrow
of time. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2018)

35. Wu, P., Liu, J., Shi, Y., Sun, Y., Shao, F., Wu, Z., Yang, Z.: Not only look, but
also listen: Learning multimodal violence detection under weak supervision. In:
Proceedings of the European Conference on Computer Vision (ECCV) (2020)

36. Xu, D., Xiao, J., Zhao, Z., Shao, J., Xie, D., Zhuang, Y.: Self-supervised spatiotem-
poral learning via video clip order prediction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

37. Xu, J., Chen, G., Lu, J., Zhou, J.: Unintentional action localization via counter-
factual examples. IEEE Transactions on Image Processing 31, 3281–3294 (2022)

38. Yao, T., Zhang, Y., Qiu, Z., Pan, Y., Mei, T.: Seco: Exploring sequence supervi-
sion for unsupervised representation learning. In: AAAI Conference on Atrificial
Intelligence (2021)

39. Yao, Y., Liu, C., Luo, D., Zhou, Y., Ye, Q.: Video playback rate perception
for self-supervised spatio-temporal representation learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2020)

40. Zhong, J.X., Li, N., Kong, W., Liu, S., Li, T.H., Li, G.: Graph convolutional
label noise cleaner: Train a plug-and-play action classifier for anomaly detection.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2019)

41. Zhou, N., Chen, G., Xu, J., Zheng, W.S., Lu, J.: Temporal label aggregation for
unintentional action localization. In: IEEE International Conference on Multimedia
and Expo (ICME) (2021)


	Self-supervised Learning for Unintentional Action Prediction

